Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis

Abstract

Cysteine proteases related to mammalian interleukin-1β converting enzyme (ICE) and to its Caenorhabditis elegans homologue, CED-3, play a critical role in the biochemical events that culminate in apoptosis. We have determined the three-dimensional structure of a complex of the human CED-3 homologue CPP32/apopain with a potent tetrapeptide-aldehyde inhibitor. The protein resembles ICE in overall structure, but its S4 subsite is strikingly different in size and chemical composition. These differences account for the variation in specificity between the ICE- and CED-3-related proteases and enable the design of specific inhibitors that can probe the physiological functions of the proteins and disease states with which they are associated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Cerretti, D.P. et al. Molecular cloning of the interleukin-1β converting enzyme. Science 256, 97–100 (1992).

    Article  CAS  PubMed  Google Scholar 

  3. Munday, N.A. et al. Molecular-cloning and pro-apoptotic activity of ICE(Rel)II and ICE(Rel) III, members of the ICE/CED-3 family of cysteine proteases. J Biol. Chem. 270, 15870–15876 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Faucheu, C. et al. A novel human protease similar to the interleukin-1β converting- enzyme induces apoptosis in transfected cells. EMBO J. 14, 1914–1922 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamens, J. et al. Identification and characterization of ICH-2 a novel member of the interleukin–1β–converting enzyme family of cysteine proteases. J. Biol. Chem. 270, 15250–15256 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Kumar, S., Kinoshita, M., Noda, M., Copeland, N.G. & Jenkins, N.A. Induction of apoptosis by the mouse nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell-death gene CED-3 and the mammalian IL1-β-converting enzyme. Genes & Development 8, 1613–1626 (1994).

    Article  CAS  Google Scholar 

  7. Wang, L., Miura, M., Bergeron, L., Zhu, H. & Yuan, J.Y. ICH-1, an ICE/CED-3-related gene, encodes both positive and negative regulators of programmed cell-death. Cell 78, 739–750 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell-death protein CED-3 and mammalian interleukin-1-β- converting enzyme. J. Biol. Chem. 269, 30761–30764 (1994).

    CAS  PubMed  Google Scholar 

  9. Fernandes-Alnemri, T., Litwack, G. & Alnemri, E.S. MCH2, a new member of the apoptotic CED-3/ICE cysteine protease gene family. Cancer Res. 55, 2737–2742 (1995).

    CAS  PubMed  Google Scholar 

  10. Fernandes-Alnemri, T. et al. MCH3, a novel human apoptotic cysteine protease highly related to CPP32. Cancer Res. 55, 6045–6052 (1995).

    CAS  PubMed  Google Scholar 

  11. Duan, H., Chinnaiyan, A.M., Hudson, P.L, Wing, J.P., He, W.-W. & Dixit, V.M. ICE-LAP3, a novel mammalian homolog of the Caednorhabditis elegans cell death protein CED-3 in activated during FAS and tumor necrosis factor-induced apoptosis. J. Biol. Chem. 271, 1621–1625 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Li, P. et al. Mice deficient in il-1β-converting enzyme are defective in production of mature il-1β and resistant to endotoxic shock. Cell 80, 401–411 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting-enzyme. Science 267, 2000–2003 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Ellis, R.E., Yuan, J.Y. & Horvitz, H.R. Mechanisms and functions of cell death. Annu Rev Cell Biol 7, 663–698 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A. & Yuan, J.Y. Induction of apoptosis in fibroblasts by IL-1β-converting enzyme, a mammalian homolog of the C. elegans cell-death gene CED-3. Cell 75, 653–660 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, J.Y., Shaham, S., Ledoux, S., Ellis, H.M. & Horvitz, H.R., The, C. The C. elegans cell-death gene CED-3 encodes a protein similar to mammalian interleukin-1-β-converting enzyme. Cell 75, 641–652 (1993).

    Article  CAS  PubMed  Google Scholar 

  17. Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E. & Poirier, G.G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53, 3976–3985 (1993).

    CAS  PubMed  Google Scholar 

  18. Lazebnik, Y.A., Kaufmann, S.H., Desnoyers, S., Poirier, G.G. & Earnshaw, W.C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371, 346–347 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Nicholson, D.W. et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376, 37–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Tewari, M. et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell 81, 801–809 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Casciola-Rosen, L.A., Miller, D.K., Anhalt, G.J & Rosen, A. Specific cleavage of the 70-kDa protein-component of the u1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell-death. J. Biol. Chem. 269, 30757–30760 (1994).

    CAS  PubMed  Google Scholar 

  22. Casciola-Rosen, L.A., Anhalt, G.J. & Rosen, A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J. Exp. Med. 182, 1625–1634 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Casciola-Rosen, L.A. et al. Apopain/CPP32 cleaves proteins that are essential for cellular repair: a fundamental principle of apoptotic death. J. Exp. Med. in press (1996). (AUTHOR: STATUS?)

  24. Martin, S.J. et al. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol. Chem. 270, 6425–6428 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Lazebnik, Y.A. et al. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natal. Acad. Sci. USA 92, 9042–9046 (1995).

    Article  CAS  Google Scholar 

  26. Brancolini, C., Benedetti, M. & Schneider, C. Microfilament reorganization during apoptosis -the role of gas2, a possible substrate for ICE-like proteases. EMBOJ. 14, 5179–5190 (1995).

    Article  CAS  Google Scholar 

  27. Emoto, Y. et al. Proteolyt ic activation of protein kinase Cδ by an ICE-like protease in apoptotic cells. EMBO J. 14, 6148–6156 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wilson, K.P. et al. Structure and mechanism of interleukin-1β converting-enzyme. Nature 370, 270–275 (1994).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, N.P.C. et al. Crystal-structure of the cysteine protease interleukin-1β-converting enzyme - a (p20/p10)(2) homodimer. Cell 78, 343–352 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Thornberry, N.A., Miller, D.K. & Nicholson, D.W. Interleukin-1β converting enzyme and related proteases as potential targets in inflammation and apoptosis. Perspectives in Drug Discovery and Design 2, 389–399 (1995).

    Article  CAS  Google Scholar 

  31. Westerik, J.O. & Wolfenden, R. Aldehydes as inhibitors of papain. J. Biol. Chem. 247, 8195–8197 (1972).

    CAS  PubMed  Google Scholar 

  32. Ortiz, C., Tellier, C., Williams, H., Stolowich, N.J. & Scott, A.I. Diastereotopic covalent binding of the natural inhibitor leupeptin to trypsin: detection of two interconverting hemiacetals by solution and solid-state NMRspectroscopy. Biochemistry 30, 10026–10034 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Delbaere, L.T. & Brayer, G.D. The 1. 8 Å structure of the complex between chymostatin and Streptomyces griseus protease A. A model for serine protease catalytic tetrahedral intermediates. J. Mol. Biol. 183, 89–103 (1985).

    Article  CAS  PubMed  Google Scholar 

  34. Frankfater, A. & Kuppy, T. Mechanism of association of N-acetyl-L-phenylalanylglycinal to papain. Biochemistry 20, 5517–5524 (1981).

    Article  CAS  PubMed  Google Scholar 

  35. Mackenzie, N.E., Grant, S.K., Scott, A.I. & Malthouse, J.P. 13C NMR study of the stereospecificity of the thiohemiacetals formed on inhibition of papain by specific enantiomeric aldehydes. Biochemistry 25, 2293–2298 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Menard, R. et al. Contribution of the glutamine 19 side chain to transition-state stabilization in the oxyanion hole of papain. Biochemistry 30, 8924–8928 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. SAINT Software Reference Manual (Siemens Analytical Instruments, Madison, Wisconsin, 1995).

  38. Brünger, A.T. X-PLOR: Version 3.1, a System forX-Ray Crystallography and NMR (Yale University Press, New Haven 1992).

    Google Scholar 

  39. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. in Crystallographic Databases - Information Content, Software Systems, Scientific Applications (eds. Alien, F.H., Bergerhoff, G. & Sievers, R.) 107–132 (Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, 1987).

    Google Scholar 

  40. Sack, J.S. CHAIN - a crystallographic modeling program. J. Mol. Graphics 6, 224–225 (1988).

    Article  Google Scholar 

  41. Zhang, K.Y.J. SQUASH-combining constraints for macromolecular phase refinement and extension. Acta Crystallogr. D49, 213–222 (1993).

    CAS  Google Scholar 

  42. Hodel, A., Kim, S.-H. & Brünger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–858 (1992).

    Article  CAS  Google Scholar 

  43. Frishman, D. & Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Genet. 23, 566–579 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Carson, M. Ribbon models of macromolecules. J. Molec. Graph. 5, 103–106 (1987).

    Article  CAS  Google Scholar 

  45. QUANTA User Guide (Molecular Simulations, San Diego, 1996).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotonda, J., Nicholson, D., Fazil, K. et al. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nat Struct Mol Biol 3, 619–625 (1996). https://doi.org/10.1038/nsb0796-619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0796-619

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing