Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intrinsic φ,ψ propensities of amino acids, derived from the coil regions of known structures

Abstract

Many different factors contribute to secondary structure propensities, including φ,ψ preferences, side-chain interactions, steric effects and hydrophobic tertiary contacts. To deconvolute these competing factors, we have adopted a novel approach which quantifies the intrinsic φ,ψ propensities for residues in coil regions (that is, residues not in α-helix and not in β-strand). Comparisons of intrinsic φ,ψ propensities with their equivalent secondary structure propensities show that while correlations for helix are relatively weak, those for strand are much stronger. This paper describes our new φ,ψ propensities and provides an explanation for the variations observed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chou, P.Y. & Fasman, G.D. Predictions of the secondary structure of proteins from their amino acid sequence. Adv. Enzmol. 47, 45–148 (1978).

    CAS  Google Scholar 

  2. Wójcik, J., Altmann, K.-H. & Scheraga, H.A. Helix-coil stability constants for the naturally occurring amino acids in water. XXIV. Biopolymers 30, 121–134 (1990).

    Article  Google Scholar 

  3. Smith, C.K., Withka, J.M. & Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  4. Minor, D.L. & Kim, P.S. Measurement of the β-sheet forming propensities of amino acids Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  5. Minor, D.L. & Kim, P. Context is a major determinant of β-sheet propensity. Nature 371, 264–267 (1994).

    Article  CAS  Google Scholar 

  6. Horovitz, A., Matthews, J.M. & Ferscht, A.R. α-helix stability in proteins. II. Factors that influence stability at an internal position. J. molec. Biol. 227, 560–568 (1992).

    Article  CAS  Google Scholar 

  7. Blaber, M., Zhang, X.-J. & Matthews, B.W. Structural basis of amino acid α-helix propensity. Science 260, 1637–1640 (1993).

    Article  CAS  Google Scholar 

  8. Padmanabham, S., Marquesse, S., Ridgeway, T., Laue, T.M. & Baldwin, R.L. Relative helix forming tendencies of the amino acids. Nature 344, 268–270 (1990).

    Article  Google Scholar 

  9. Lyu, P.C., Liff, M.I., Marky, L.A. & Kallenbach, N.R. Side chain contributions to the stability of α-helical structure in peptides. Science 250, 669–671 (1990).

    Article  CAS  Google Scholar 

  10. O'Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  11. Kim, C.A. & Berg, J.M. Thermodynamic β-sheet propensities measured using a zinc finger host peptide. Nature 362, 267–270 (1993).

    Article  CAS  Google Scholar 

  12. Hermans, J., Anderson, A.G. & Yun, R.H. Differential helix propensities of small apolar side chains studied by molecular dynamics simulations. Biochemistry 31, 5646–5653 (1992).

    Article  CAS  Google Scholar 

  13. Gibrat, J.-F., Robson, B. & Gamier, J. Influence of local amino acid sequence upon the zones of the tosional angles φ and ψ adopted by residues in proteins. Biochemistry 30, 1578–1586 (1991).

    Article  CAS  Google Scholar 

  14. Kang, H.S., Kurochina, N.A. & Lee, B. Estimation and use of protein backbone angle probabilities. J. molec. Biol. 229, 448–460 (1993).

    Article  CAS  Google Scholar 

  15. McGregor, M.J., Islam, S.A. & Sternberg, M.J.E. Analysis of the relationsihp between side-chain conformation and secondary structure in globular proteins. J. molec. Biol. 198, 295–310 (1987).

    Article  CAS  Google Scholar 

  16. Ralston, E. & DeCoen, J.-L. Folding of polypeptide chains induced by the amino acid side-chains. J. molec. Biol. 83, 393–420 (1974).

    Article  CAS  Google Scholar 

  17. Garratt, R.C., Taylor, W.R. & Thornton, J.M. The influence of tertiary structure on secondary structure prediction. FEBS letts 188, 59–62 (1985).

    Article  CAS  Google Scholar 

  18. Garratt, R.C., Taylor, W.R. & Thornton, J.M. An extension of secondary structure prediction towards the prediction of tertiary structure. FEBS letts 280, 141–146 & 401 (1991).

    Article  CAS  Google Scholar 

  19. Zhou, N.E., Monera, O.D., Kay, C.M. & Hodges, R.S. α-helical propensities of amino acids in the hydrophobic face of an amphipathic α-helix Protein and Peptide letts. 1, 114–119 (1994).

    CAS  Google Scholar 

  20. Muñoz, V. & Serrano, L. Elucidating the folding problem of helical peptides using empirical parameters. Nature struct. Biol. 1, 399–409 (1994).

    Article  Google Scholar 

  21. Zimmerman, S.S., Pottle, M.S., Némethy, G. & Scheraga, H.A. Conformational analysis of the 20 naturally occurring amino acid residues using ECEPP Macromolecules 10, 1–9 (1977)

    Article  CAS  Google Scholar 

  22. Finkelstein, A.V. & Ptitsyn, O.B. Theory of protein molecule organisation. I. Thermodynamic parameters of local secondary structures in the unfolded protein chain. Biopolymers 16, 469–495 (1976).

    Article  Google Scholar 

  23. Finkelstein, A.V. & Ptitsyn, O.B. A theory of protein molecule self organisation.IV. Helical and irregular local structures of unfolded protein chains. J. molec. Biol. 103, 15–24 (1976).

    Article  CAS  Google Scholar 

  24. Muñoz, V. & Serrano, L. Intrinsic secondary structure propensities of the amino acids, using statistical φ–ψ matrices: Comparison with experimental studies Proteins 20, 301–311 (1994).

    Article  Google Scholar 

  25. Bernstein, F.C., et al. The Protein Data Bank: A computer based archival file for macromolecular structures. J. molec. Biol. 122, 535–542 (1977).

    Article  Google Scholar 

  26. Kabsch, W. & Sander, C. Dictionary of protein secondary structure. Biopolymers 22, 2577–2637 (1983).

    Article  CAS  Google Scholar 

  27. Janin, J., Wodak, S., Levitt, M. & Maigret, B. Conformation of amino acid side-chains in proteins. J. molec. Biol. 125, 357–386 (1978).

    Article  CAS  Google Scholar 

  28. Ponder, J.W. & Richards, F.M. Tertiary templates for proteins. J. molec. Biol 193, 775–791 (1987).

    Article  CAS  Google Scholar 

  29. Dunbrack, R. & Karplus, M. Conformational analysis of the backbone dependent rotamer preferences of protein side-chains. Nature struct. Biology 1, 334–339 (1994).

    Article  CAS  Google Scholar 

  30. Pickett, S.D. & Sternberg, M.J.E. Empirical scale of side chain conformational entropy in protein folding. J. molec. Biol. 231, 825–839 (1993).

    Article  CAS  Google Scholar 

  31. Creamer, T.P. & Rose, G.D. Side-chain entropy opposes α-helix formation but rationalises experimentally determined helix forming propensities Biochemistry 89, 5937–5941 (1992).

    CAS  Google Scholar 

  32. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  33. Bai, Y. & Englander, S.W. Hydrogen bond strength and β-sheet propensities: the role of a side chain blocking effect. Proteins 18, 262–266 (1994).

    Article  CAS  Google Scholar 

  34. Efimov, A.V. Standard conformations of polypeptide chains in irregular regions of proteins. Molecular Biology (Moscow) 20, 208–216 (1980).

    Google Scholar 

  35. Wilmot, C.M. & Thornton, J.M. β-turns and their distortions: a proposed new nomenclature. Prot. Engng. 3, 479–493 (1990).

    Article  CAS  Google Scholar 

  36. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures J. App. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swindells, M., MacArthur, M. & Thornton, J. Intrinsic φ,ψ propensities of amino acids, derived from the coil regions of known structures. Nat Struct Mol Biol 2, 596–603 (1995). https://doi.org/10.1038/nsb0795-596

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0795-596

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing