Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interhelical hydrogen bonds in the CFTR membrane domain

Abstract

Critical mutations in the membrane-spanning domains of proteins cause many human diseases. We report the expression in Escherichia coli of helix-loop-helix segments of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel domain in milligram quantities. Analysis of gel migration patterns of these constructs, in conjunction with circular dichroism spectroscopy, demonstrate that a neutral-to-charged, CF-phenotypic point mutation of a hydrophobic residue (V232D) in the CFTR transmembrane (TM) helix 4 induces a hydrogen bond with neighboring wild type Gln 207 in TM helix 3. As an electrostatic crosslink within a hydrocarbon phase, such a hydrogen bond could alter the normal assembly and alignment of CFTR TM helices and/or impede their movement in response to substrate transport. Our results imply that membrane proteins may be vulnerable to loss of function through formation of membrane-buried interhelical hydrogen bonds by partnering of proximal polar side chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Energy-minimized model of antiparallel CFTR transmembrane helical segments 3 and 4.
Figure 2: PAGE and circular dichroism spectral analyses of wild type and mutant CFTR TM 3–4 constructs.
Figure 3: Polar residue partnering in the CFTR transmembrane domain.

Similar content being viewed by others

References

  1. Creighton, T.E. Proteins: structure and molecular properties (W.H. Freeman and Co., New York; 1992).

    Google Scholar 

  2. White, S.H. & Wimley, W.C. Annu. Rev. Biophys. Biomol. Struct. 28, 319–365 (1999).

    Article  CAS  Google Scholar 

  3. Stevens, T.J. & Arkin, I.T. Proteins 36, 135–143 (1999).

    Article  CAS  Google Scholar 

  4. Grigorieff, N., Ceska, T.A., Downing, K.H., Baldwin, J.M. & Henderson, R. J. Mol. Biol. 259, 393–421 (1996).

    Article  CAS  Google Scholar 

  5. Deisenhofer, J., Epp, O., Sinning, I. & Michel, H. J. Mol. Biol. 246, 429–457 (1995).

    Article  CAS  Google Scholar 

  6. Venkatesan, P. & Kaback, H.R. Proc. Natl. Acad. Sci. USA 95, 9802–9807 (1998).

    Article  CAS  Google Scholar 

  7. Strader, C.D. et al. J. Biol. Chem. 266, 5–8 (1991).

    CAS  PubMed  Google Scholar 

  8. Perrin, C.L. & Nielson, J.B. Annu. Rev. Phys. Chem. 48, 511–544 (1997).

    Article  CAS  Google Scholar 

  9. Choma, C., Gratkowski, H., Lear, J.D. & DeGrado, W.F. Nature Struct. Biol. 7, 161–166 (2000).

    Article  CAS  Google Scholar 

  10. Zhou, F.X., Cocco, M.J., Brünger, A.T. & Engelman, D.M. Nature Struct. Biol. 7, 154–160 (2000).

    Article  CAS  Google Scholar 

  11. Smith, S.O., Smith, S.C. & Bormann, B.J. Nature Struct. Biol. 3, 252–258 (1996).

    Article  CAS  Google Scholar 

  12. Lemmon, M.A. et al. J. Biol. Chem. 267, 7683–7689 (1992).

    CAS  Google Scholar 

  13. Deber, C.M. et al. Proc. Natl. Acad. Sci. USA 90, 11648–11652 (1993).

    Article  CAS  Google Scholar 

  14. MacKenzie, K.R., Prestgard, J.H. & Engelman, D.M. Science 276, 131–133 (1997).

    Article  CAS  Google Scholar 

  15. Sheppard, D.N. & Welsh, M.J. Physiol. Rev. 79, S23–S45 (1999).

    Article  CAS  Google Scholar 

  16. Cystic Fibrosis Genetic Analysis Consortium; http://www.genet.sickkids.on.ca/cftr-cgi-bin/MutationTable

  17. Riordan, J.R. et al. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  18. Bowie, J.U. J. Mol. Biol. 272, 780–789 (1997).

    Article  CAS  Google Scholar 

  19. Peng, S., Liu, L.-P., Emili, A.Q. & Deber, C.M. FEBS Lett. 431, 29–33 (1998).

    Article  CAS  Google Scholar 

  20. Popot, J.-L. & Engelman, D.M. Annu. Rev. Biochem. 69, 881–922 (2000).

    Article  CAS  Google Scholar 

  21. Chu, D.M. et al. J. Biol. Chem. 273, 14649–14656 (1998).

    Article  CAS  Google Scholar 

  22. Otsuka, F. et al. Biochim. Biophys. Acta 1492, 330–340 (2000).

    Article  CAS  Google Scholar 

  23. Han, J.C. & Han, G.Y. Anal. Biochem. 220, 5–10 (1994).

    Article  CAS  Google Scholar 

  24. Fisher, L.E., Engelman, D.M. & Sturgis, J.N. J. Membr. Biol. (1999).

  25. Popot, J. & Engelman, D.M. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  Google Scholar 

  26. Ramjeesingh, M., Huan, L.-J., Garami, E. & Bear, C.E. Biochem. J. 342, 119–123 (1999).

    Article  CAS  Google Scholar 

  27. Akabas, M.H. Biochemistry 37, 12233–12240 (1998).

    Article  CAS  Google Scholar 

  28. Wang, C. & Deber, C.M. J. Biol. Chem. 275, 16155–16159 (2000).

    Article  CAS  Google Scholar 

  29. Adams, P.D., Arkin, I.T., Engelman, D.M. & Brünger, A.T. Nature Struct. Biol. 2, 154–162 (1995).

    Article  CAS  Google Scholar 

  30. Deber, C. M. et al. Protein Science 10, 212–219 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants to C.M.D. from the Canadian Cystic Fibrosis Foundation, the Canadian Institutes of Health Research (CIHR) and the National Institutes of Health (NIDDK). A.G.T. holds a CIHR postdoctoral fellowship. We are grateful to A. Brünger and P. Adams (Yale University) for providing us with the global conformation search program used for the simulation of CFTR helical dimers. We thank C. Wang for assistance with molecular modeling, and M. Glibowicka and W. Chen for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Deber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Therien, A., Grant, F. & Deber, C. Interhelical hydrogen bonds in the CFTR membrane domain. Nat Struct Mol Biol 8, 597–601 (2001). https://doi.org/10.1038/89631

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/89631

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing