Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structure of human homogentisate dioxygenase

Abstract

Homogentisate dioxygenase (HGO) cleaves the aromatic ring during the metabolic degradation of Phe and Tyr. HGO deficiency causes alkaptonuria (AKU), the first human disease shown to be inherited as a recessive Mendelian trait. Crystal structures of apo-HGO and HGO containing an iron ion have been determined at 1.9 and 2.3 Å resolution, respectively. The HGO protomer, which contains a 280-residue N-terminal domain and a 140-residue C-terminal domain, associates as a hexamer arranged as a dimer of trimers. The active site iron ion is coordinated near the interface between subunits in the HGO trimer by a Glu and two His side chains. HGO represents a new structural class of dioxygenases. The largest group of AKU associated missense mutations affect residues located in regions of contact between subunits.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron density and Cα trace for HGO.
Figure 2: AKU associated mutations and the HGO quaternary structure.
Figure 3: Side chains close to the active site of HGO.
Figure 4: The HGO catalytic mechanism.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Knox, W.E. & Edwards, S.W. J. Biol.Chem. 216, 479–487 (1955).

    CAS  PubMed  Google Scholar 

  2. La Du, B.N., Zannoni, B.N., Laster, L. & Seegmiller, J.E. J. Biol.Chem. 230, 251–260 (1958).

    CAS  PubMed  Google Scholar 

  3. O'Brien, W.M., La Du, B.N. & Bunim, J.J. Am. J. Med. 34, 813–838 (1963).

    Article  Google Scholar 

  4. Garrod, A.E. Lancet 2, 1616–1620 (1902).

    Article  CAS  Google Scholar 

  5. Garrod, A.E. Lancet 2, 73–79 (1908).

    CAS  Google Scholar 

  6. Fernández-Cañón, J.M. et al. Nature Genet. 14, 19–24 (1996).

    Article  PubMed  Google Scholar 

  7. Beltrán-Valero de Bernabé, D. et al. Am. J. Hum. Genet. 62, 776–784 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Beltrán-Valero de Bernabé, D., Jiménez, F.J., Aquaron, R. & Rodríguez de Córdoba, S. Am. J. Hum. Genet. 64, 1316–1322 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beltrán-Valero de Bernabé, D. et al. J. Med. Genet. 36, 922–923 (1999).

    PubMed  Google Scholar 

  10. Muller, C.R. et al. Eur. J. Hum. Genet. 7, 645–651 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Que, L. & Ho, R.Y.N. Chem. Rev. 96, 2607–2624 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Harpel, M.R. & Lipscomb, J.D. J. Biol. Chem. 265, 22187–22196 (1990).

    CAS  PubMed  Google Scholar 

  13. Yang, W., Hendrickson, W.A., Crouch, R.J. & Satow, Y. Science 249, 1398–1405 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Ko, T.P., Ng, J.D. & McPherson, A. Plant Physiol. 101, 729–44 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Janin, J. & Chothia, C. J. Biol. Chem. 265, 16027–16030 (1990).

    CAS  PubMed  Google Scholar 

  16. Takemori, S., Furuya, E., Mihara, K. & Katagiri, M. Eur. J. Biochem. 6, 411–418 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt, S.R., Müller, C.R. & Kress, W. Eur. J. Biochem. 228, 425–430 (1999).

    Article  Google Scholar 

  18. Adachi, K., Iwayama, Y., Tanioka, H. & Takeda, Y. Biochim. Biophys. Acta 118, 88–97 (1966).

    Article  CAS  PubMed  Google Scholar 

  19. Han, S., Eltis, L.D., Timmis, K.N., Muchmore, S.W. & Bolin, J.T. Science 270, 976–80 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Eltis, L.D. & Bolin, J.T. J. Bacteriol. 178, 5930–5937 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sugimoto, K. et al. Structure 7, 953–965 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Ohlendorf, D.H., Lipscomb, J.D. & Weber, P.C. Nature 336, 403–405 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. Boyington, J.C., Gaffney, B.J. & Amzel, L.M. Science 260, 1482–1486 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Roach, P.L. et al. Nature 375, 700–704 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Fernández-Cañón, J. M. & Peñalva, M.A. Proc. Natl. Acad. Sci. USA 92, 9132–9136 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Manning, K., Al-Dhalim, M., Finegold, M. & Grompe, M. Proc. Natl. Acad. Sci. USA 96, 11928–11933 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Terwilliger, T.C. Methods Enzymol. 276, 530–537 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  31. Brunger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  32. Lu, G. PDB Newsletter 78, 10–11 (1996).

    Google Scholar 

  33. Hensley, P. Structure 4, 367–373 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Biochemistry and polymer science. (Royal Society of Chemistry, London; 1992).

  35. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L.-J. Baker, J. Hamilton, T. Hurley and E. Harper for useful comments and discussion. We thank N. Steussy and H. Belamy for assistance collecting MAD data on the Stanford Synchrotron Radiation Laboratory beamline 1-5. This work was supported by the NIH, the Midwest Affiliate of the American Heart Association, and by the Spanish Comisión Interministerial de Ciencia y Tecnología and the Comunidad Autónoma de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Timm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titus, G., Mueller, H., Burgner, J. et al. Crystal structure of human homogentisate dioxygenase. Nat Struct Mol Biol 7, 542–546 (2000). https://doi.org/10.1038/76756

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/76756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing