Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor

Abstract

Using NMR spectroscopy, we determined the solution structure of a single-chain T-cell receptor (scTCR) derived from the major histocompatibility complex (MHC) class II-restricted D10 TCR. The conformations of complementarity-determining regions (CDRs) 3β and 1α and surface properties of 2α are different from those of related class I-restricted TCRs. We infer a conserved orientation for TCR Vα domains in complexes with both class I and II MHC–peptide ligands, which implies that small structural variations in Vα confer MHC class preference. High mobility of CDR3 residues relative to other CDR or framework residues (picosecond time scale) provides insight into immune recognition and selection mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment28 of the CDRs of MHC class II-specific D10 TCR with MHC class I- specific TCRs 2C (ref. 16), A6 (ref. 9), N15 (ref. 17), KB5-C20 (ref. 18), B7 (ref. 11). KB5 = KB5-C20.
Figure 2: Ensemble of 22 backbone structures of the D10 TCR Vα and Vβ domains (in stereo).
Figure 3: Strips from an 15N-edited NOESY-HSQC spectrum (τm = 200 ms) on a uniformly 15N-labeled, 50% deuterated D10 scTCR sample.
Figure 4: TCR interaction with pMHC.
Figure 5: Backbone mobility of the D10 scTCR.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Meuer, S.C., Acuto, O., Hercend, T., Schlossman, S.F., Reinherz, E.L. The human T-cell receptor. Annu. Rev. Immunol. 2, 23–50 (1984).

    Article  CAS  Google Scholar 

  2. Marrack, P. & Kappler, J. The antigen-specific, major histocompatibility complex-restricted receptor on T cells. Adv. Immunol. 38, 1–30 (1986).

    Article  CAS  Google Scholar 

  3. Zinkernagel, R.M. & Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  Google Scholar 

  4. Meuer, S.C., Schlossman, S.F. & Reinherz, E.L. Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. Proc. Natl. Acad. Sci. USA 79, 4395–4399 (1982).

    Article  CAS  Google Scholar 

  5. Biddison, W.E. Rao, P.E., Talle, M.A., Goldstein, G. & Shaw, S. Possible involvement of the OKT4 molecule in T cell recognition of class II HLA antigens. Evidence from studies of cytotoxic T lymphocytes specific for SB antigens. J. Exp. Med. 156, 1065–1076 (1982).

    Article  CAS  Google Scholar 

  6. Krensky, A.M. Reiss, C.S., Mier, J.W., Strominger, J.L. & Burakoff, S.J. Long-term human cytolytic T-cell lines allospecific for HLA-DR6 antigen are OKT4+. Proc. Natl. Acad. Sci. USA 79, 2365–2369 (1982).

    Article  CAS  Google Scholar 

  7. Meuer, S.C. et al. Surface structures involved in target recognition by human cytotoxic T lymphocytes. Science 218, 471–473 (1982).

    Article  CAS  Google Scholar 

  8. Utsunomiya, Y. et al. Analysis of a monoclonal rat antibody directed to the alpha-chain variable region (V alpha 3) of the mouse T cell antigen receptor. J. Immunol. 143, 2602–2608 (1989).

    CAS  PubMed  Google Scholar 

  9. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  10. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide–MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  11. Ding, Y.-H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    Article  CAS  Google Scholar 

  12. Teng, M.-K. et al. Identification of a common docking topology with substantial variation among different TCR–peptide–MHC complexes. Curr. Biol. 8, 409–412 (1998).

    Article  CAS  Google Scholar 

  13. Kaye, J., Porcelli, S., Tite, J., Jones, B. & Janeway, C.A. Jr. Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen presenting cells in the activation of T cells. J. Exp. Med. 158, 836–856 (1983).

    Article  CAS  Google Scholar 

  14. Novotny, J. et al. A soluble, single-chain T-cell receptor fragment endowed with antigen-combining properties. Proc. Natl. Acad. Sci USA 88, 8646–8650 (1991).

    Article  CAS  Google Scholar 

  15. Khandekar, S.S. et al. Conformational integrity and ligand binding properties of a single chain T-cell receptor expressed in Escherichia coli. J. Biol. Chem 272, 32190–32197 (1997).

    Article  CAS  Google Scholar 

  16. Garcia, K.C. et al. An αβ T cell receptor structure at 2.5 Å and its orientation in the TCR–MHC complex. Science 274, 209–219 (1996).

    Article  CAS  Google Scholar 

  17. Wang, J. et al. Atomic structure of an αβ T cell receptor (TCR) heterodimer in complex with an anti-TCR Fab fragment derived from a mitogenic antibody. EMBO J. 17, 10–26 (1998).

    Article  Google Scholar 

  18. Housset, D. et al. The three-dimensional structure of a T-cell antigen receptor VαVβ heterodimer reveals a novel arrangement of the Vβ domain. EMBO J. 16, 4205–4216 (1997).

    Article  CAS  Google Scholar 

  19. Richardson, J.S. The anatomy and taxonomy of protein structure. Adv. Protein Chem. 34, 167–339 (1981).

    Article  CAS  Google Scholar 

  20. Bentley, G.A., Boulot, G., Karjalainen, K. & Mariuzza, R.A. Crystal structure of the β chain of a T cell antigen receptor. Science 267, 1984–1987 (1995).

    Article  CAS  Google Scholar 

  21. Acuto, O., Hussey, R.E. & Reinherz, E.L. Multiple class I and class II major histocompatibility complex allospecificities are generated with T cell receptor variable (V) domains created by a single Ti β V gene family. J. Exp. Med. 162, 1387–1392 (1985).

    Article  CAS  Google Scholar 

  22. Stern, L.J. & Wiley, D.C. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure 15, 245–251 (1994).

    Article  Google Scholar 

  23. Jorgenson, J.L., Esser, U., Fazekas de St. Groth, B., Reay, P.A. & Davis, M.M. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 355, 224–230 (1992).

    Article  Google Scholar 

  24. Sant'Angelo, D.B. et al. The specificity and orientation of a TCR to its peptide–MHC class II ligands. Immunity 4, 367–376 (1996).

    Article  CAS  Google Scholar 

  25. Rudensky, A.Y., Preston-Hurlburt, P., Hong, S.C., Barlow, A. & Janeway, C.A. Sequence analysis of peptides bound to MHC class II molecules. Nature 353, 622–627 (1991).

    Article  CAS  Google Scholar 

  26. Brown, J.H. et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39 (1993).

    Article  CAS  Google Scholar 

  27. Vignali, D.A.A. & Strominger, J.L. Amino acid residues that flank core peptide epitopes and the extracellular domains of CD4 modulate differential signaling through the T cell receptor. J. Exp. Med. 179, 1945–1956 (1994).

    Article  CAS  Google Scholar 

  28. Arden, B., Clark, S.P., Kabelitz, D. & Mak, T.W. Mouse T-cell receptor variable gene segments. Immunogenetics 42, 501–530 (1995).

    CAS  PubMed  Google Scholar 

  29. Sim, B.-C., Zerva, L., Greene, M.I. & Gascoigne, N.R.J. Control of MHC Restriction by TCR Vα CDR1 and CDR2. Science 273, 963–966 (1996).

    Article  CAS  Google Scholar 

  30. Rupp, F et al. T-cell antigen receptors with identical variable regions but different diversity and joining region gene segments have distinct specificities but cross-reactive idiotypes. Proc. Natl. Acad. Sci. USA 84, 219–222 (1987).

    Article  CAS  Google Scholar 

  31. Cammarota, G. et al. Identification of a CD4 binding site on the β2 domain of HLA-DR molecules. Nature 356, 799–801 (1992).

    Article  CAS  Google Scholar 

  32. König, R., Huang, L.-Y. & Germain, R.N. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356:796–798 (1992).

    Article  Google Scholar 

  33. Norment, A.M., Salter, R.D., Parham, P., Engelhard, V.H. & Littman, D.R. Cell–cell adhesion mediated by CD8 and MHC class I molecules. Nature 336:79–81.

  34. Farrow, N.A., Zhang, O., Forman-Kay, J.D. & Kay, L.E. Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry 34, 868–878 (1995).

    Article  CAS  Google Scholar 

  35. Markus, M.A., Dayie, K.T., Matsudaira, P. & Wagner, G. Local mobility within villin 14T probed via heteronuclear relaxation measurements and a reduced spectral density mapping. Biochemistry 35, 1722–1732 (1996).

    Article  CAS  Google Scholar 

  36. Wyss, D.F. Dayie, K.T. & Wagner, G. The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions. Protein Sci. 6, 534–542 (1997).

    Article  CAS  Google Scholar 

  37. Takahashi, H., Suzuki, E., Shimada, I. & Arata, Y. Dynamical structure of the antibody combining site as studied by 1H-15N shift correlation NMR spectroscopy. Biochemistry 31, 2464–2468 (1992).

    Article  CAS  Google Scholar 

  38. Abergel, C. & Claverie, J-M. A strong propensity toward loop formation characterizes the expressed reading frames of the D segments at the Ig H and T cell receptor loci. Eur. J. Immunol. 21, 3021–3025 (1991).

    Article  CAS  Google Scholar 

  39. Gagné, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. & Sykes, B.D. Backbone and methyl dynamics of the regulatory domain of troponin C: anisotropic rotational diffusion and contribution of conformational entropy to calcium affinity. J. Mol. Biol. 278, 667–686 (1998).

    Article  Google Scholar 

  40. Manning, T.C. et al. Alanine scanning mutagenesis of an alpha beta T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  Google Scholar 

  41. Ghendler, Y. et al. Differential thymic selection outcomes stimulated by focal structural alteration in peptide/major histocompatibility complex ligands. Proc. Natl. Acad. Sci USA 95, 10061–10066 (1998).

    Article  CAS  Google Scholar 

  42. Bevan, M.J. In thymic selection, peptide diversity gives and takes away. Immunity 7, 175–178 (1997).

    Article  CAS  Google Scholar 

  43. Liu, C.-P., Parker, D., Kappler, J. & Marrack, P. Selection of antigen-specific T cells by a single IEk peptide combination. J. Exp. Med. 186, 1441–1450 (1997).

    Article  CAS  Google Scholar 

  44. Evavold, B.D., Sloan-Lancaster, J., Wilson, K.J., Rothbard, J.B. & Allen, P.M. Specific T cell recognition of minimally homologous peptides: evidence for multiple endogenous ligands. Immunity 2, 655–663 (1995).

    Article  CAS  Google Scholar 

  45. Piotto, M, Saudek, V. & Sklenar, V. Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J. Biomol. NMR 2, 661–665 (1992).

    Article  CAS  Google Scholar 

  46. Yamazaki, T. et al. An HNCA pulse scheme for the backbone assignment of 15N, 13C, 2H-labeled proteins: application to a 37-kDa trp repressor–DNA complex. J. Am. Chem. Soc. 116, 6464–6465 (1994).

    Article  CAS  Google Scholar 

  47. Talluri, S. & Wagner, G. An optimized 3D NOESY-HSQC. J. Magn. Reson. 112B, 200–205 (1996).

    Article  Google Scholar 

  48. Del Rio-Portilla, F., Blechta, V. & Freeman, R.M. Measurement of poorly resolved splittings by J doubling in the frequency domain. J. Magn. Reson. 111A, 132–135 (1994).

    Article  Google Scholar 

  49. Güntert, P., Braun, W., Billeter, M. & Wüthrich, K. Automated stereospecific 1H NMR assignments and their impact on the precision of protein structure determination in solution. J. Am. Chem. Soc. 111, 3997–4004 (1989).

    Article  Google Scholar 

  50. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms. FEBS Lett. 239, 129–136 (1988).

    Article  CAS  Google Scholar 

  51. Brünger, A.T. X-PLOR version 3.1: a system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1993).

    Google Scholar 

  52. Dayie, K.T. & Wagner, G. Relaxation-rate measurements for 15N-1H groups with pulsed-field gradients and preservation of coherence pathways. J. Magn. Reson. 111A, 121–126 (1994).

    Article  Google Scholar 

  53. Peng, J.W. & Wagner, G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 98, 308–322 (1992).

    CAS  Google Scholar 

  54. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    Article  CAS  Google Scholar 

  55. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  Google Scholar 

  56. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cancer Research Institute (fellowship to B.J.H.) and the National Institutes of Health (G.W. and E.L.R.). P.S.K. acknowledges support from the Schweizerischer Nationalfond and Schweizerische Krebsliga. We thank D. Austen and K. Huestis for technical assistance. We thank S. Khandekar and B. Bettencourt for helpful discussions. We thank F. Del Rio-Portilla for assistance with coupling constant measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hare, B., Wyss, D., Osburne, M. et al. Structure, specificity and CDR mobility of a class II restricted single-chain T-cell receptor. Nat Struct Mol Biol 6, 574–581 (1999). https://doi.org/10.1038/9359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9359

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing