Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Acceleration of the refolding of Arc repressor by nucleic acids and other polyanions

Abstract

The refolding rate of the Arc repressor dimer can be accelerated 30-fold or more by negatively charged polymers including single-stranded and double-stranded DNA, RNA, and polyvinylsulfate but not by neutral or positively charged polymers. The salt-dependence of the polyanion-mediated process and mutant studies indicate that electrostatic interactions are important in the rate acceleration. Urea-dependence studies suggest that Arc is relatively unstructured in the transition state for polyanion-stimulated refolding. At low ionic strength, the observed kinetics of refolding are consistent with a model in which denatured Arc monomers bind rapidly and nonspecifically to the polyanion and complete folding in the bound state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA accelerates the refolding of Arc.
Figure 2: Rate dependence on salt, PVS, and DNA concentration.
Figure 3: Urea and viscosity dependence.
Figure 4: Possible pathways for Arc refolding in the presence of polyanions (P).

Similar content being viewed by others

References

  1. Raumann, B.E., Brown, B.M. & Sauer, R.T. Curr. Opin. Struct. Biol. 4, 36–43 (1994).

    Article  CAS  Google Scholar 

  2. Breg, J.N., van Opheusden, J.H.J., Burgering, M.J., Boelens, R. & Kaptein, R. Nature 346, 586–589 (1990).

    Article  CAS  Google Scholar 

  3. Bonvin, A.M. et al. J. Mol. Biol. 236, 328–341 (1994).

    Article  CAS  Google Scholar 

  4. Raumann, B.E., Rould, M.A., Pabo, C.O., & Sauer, R.T. Nature 367, 75–757 (1994).

    Article  Google Scholar 

  5. Bowie, J.U. & Sauer, R.T. Biochemistry 28, 7139–7143 (1989).

    Article  CAS  Google Scholar 

  6. Milla, M.E. & Sauer, R.T. Biochemistry 33, 1125–1133 (1994).

    Article  CAS  Google Scholar 

  7. Jonsson, T., Waldburger, C.D. & Sauer, R.T. Biochemistry, 35, 4795–4802 (1996).

    Article  CAS  Google Scholar 

  8. Waldburger, C.D., Jonsson, T. & Sauer, R.T. Proc. Natl. Acad. Sci. USA 93, 2629–2634 (1996).

    Article  CAS  Google Scholar 

  9. Robinson, C.R. & Sauer, R.T. Biochemistry 35, 13878–13884 (1996).

    Article  CAS  Google Scholar 

  10. Tanford, C. Adv. Prot. Chem. 24, 1–95 (1970).

    CAS  Google Scholar 

  11. Becktel, W.J. & Schellman, J.A. Biolpolymers 26, 1859–1877 (1987).

    Article  CAS  Google Scholar 

  12. Matouschek, A. & Fersht, A.R. Proc. Natl. Acad. Sci., USA 90, 7814–7818 (1993).

    Article  CAS  Google Scholar 

  13. Milla, M.E., Brown, B.M., Waldburger, C.D. & Sauer, R.T. Biochemistry 34, 13914–13919 (1995).

    Article  CAS  Google Scholar 

  14. Neidhardt, F.C., Ingraham, J.L. & Schaechter, M. Physiology of the bacterial cell: A molecular approach. (Sinauer Associates, Sunderland, Massachusetts; 1990).

  15. Gittleman, M.S. & Matthews, C.R. Biochemistry 29, 7011–7020 (1990).

    Article  Google Scholar 

  16. Weiss, M.A. Biochemistry 29, 8020–8024 (1990).

    Article  CAS  Google Scholar 

  17. Rose, J. & Yanofsky, C. Proc. Natl. Acad. Sci. USA 71, 3134–3138 (1974).

    Article  CAS  Google Scholar 

  18. Metallo, S.J. & Schepartz, A. Nature Struct. Biol. 4, 115–117 (1997).

    Article  CAS  Google Scholar 

  19. Milla, M.E., Brown, B.M., & Sauer, R.T. Prot. Sci. 2, 2198–2205 (1993).

    Article  CAS  Google Scholar 

  20. Milla, M.E., Brown, B.M., & Sauer, R.T. Nature Struct. Biol. 1, 518–523 (1994).

    Article  CAS  Google Scholar 

  21. Brown, B.M., Milla, M.E., Smith, T.L. & Sauer, R.T. Nature Struct. Biol. 1, 164–168 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.R. and T.J. contributed equally to this work. Supported by NIH grants and a postdoctoral grant from the Damon Runyon/Walter Winchell Cancer Fund (D.R.). We thank B. Brown, M. Milla, and C. Robinson for mutant proteins, and F. Solomon for helpful discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert T. Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rentzeperis, D., Jonsson, T. & Sauer, R. Acceleration of the refolding of Arc repressor by nucleic acids and other polyanions. Nat Struct Mol Biol 6, 569–573 (1999). https://doi.org/10.1038/9353

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9353

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing