Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction

Abstract

The structures of enzymes catalyzing the reactions in central metabolic pathways are generally well conserved as are their catalytic mechanisms. The two types of 3-dehydroquinate dehydratase (DHQase) are therefore most unusual since they are unrelated at the sequence level and they utilize completely different mechanisms to catalyze the same overall reaction. The type I enzymes catalyze a cis-dehydration of 3-dehydroquinate via a covalent imine intermediate, while the type II enzymes catalyze a trans-dehydration via an enolate intermediate. Here we report the three-dimensional structures of a representative member of each type of biosynthetic DHQase. Both enzymes function as part of the shikimate pathway, which is essential in microorganisms and plants for the biosynthesis of aromatic compounds including folate, ubiquinone and the aromatic amino acids. An explanation for the presence of two different enzymes catalyzing the same reaction is presented. The absence of the shikimate pathway in animals makes it an attractive target for antimicrobial agents. The availability of these two structures opens the way for the design of highly specific enzyme inhibitors with potential importance as selective therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The different stereochemistry and reaction mechanisms of the type I and II DHQases.
Figure 2: Stereodiagrams of the electron density maps for the types I and II 3-dehydroquinase.
Figure 3: The structure of an enzyme subunit.
Figure 4: Subunit arrangement of the two types of DHQases: a, The dimer of type I DHQase from Salmonella typhi; the molecular noncrystallographic dyad is vertical in the plane of the paper.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Chaudhuri, S., Duncan, K., Graham, L. D. & Coggins, J. R. Biochem. J. 275, 1–6 (1991).

    Article  CAS  Google Scholar 

  2. Boys, C.W.G. et al. J. Mol. Biol. 227, 352–355 (1992).

    Article  CAS  Google Scholar 

  3. Banner, D.W. et al. Nature 255, 609–614 (1975).

    Article  CAS  Google Scholar 

  4. Sygusch, J., Beaudry, D. & Allaire, M. Proc. Natl. Acad. Sci. USA 84, 7846–7850 (1987).

    Article  CAS  Google Scholar 

  5. Izard, T., Lawrence, M.C., Malby, R.L., Lilley, G.G. & Colman, P.M. Structure 2, 361–369 (1994).

    Article  CAS  Google Scholar 

  6. Mirwaldt, C., Korndörfer, I. & Huber, R. J. Mol. Biol. 246, 227–239 (1995).

    Article  CAS  Google Scholar 

  7. Burnett, R.M. et al. J. Biol. Chem. 249, 4383–4392. (1974).

    CAS  PubMed  Google Scholar 

  8. Krell, T., Horsburgh, M.J., Cooper, A., Kelly, S.M. & Coggins, J.R. J. Biol. Chem. 271, 24492–24497 (1996).

    Article  CAS  Google Scholar 

  9. Jia, J., Schörken, U., Lindqvist, Y., Sprenger, G.A. & Schneider, G. Protein Sci. 6, 119–124 (1997).

    Article  CAS  Google Scholar 

  10. Reilly, A. et al. J. Biol. Chem. 269, 5523–5526 (1994).

    CAS  PubMed  Google Scholar 

  11. Deka, R.K., Kleanthous, C. & Coggins, J.R. J. Biol. Chem. 267, 22237–22242 (1992).

    CAS  PubMed  Google Scholar 

  12. Leech, A.P., James, R., Coggins, J.R. & Kleanthous, C. J. Biol. Chem. 270 25827–25836 (1995).

    Article  CAS  Google Scholar 

  13. Bottomley, J.R., Hawkins, A.R. & Kleanthous, C. Biochem. J. 319, 269–278 (1996).

    Article  CAS  Google Scholar 

  14. Harris, J.M., Gonzalez-Bello, C., Kleanthous, C., Hawkins, A.R, Coggins, J.R. & Abell,C. Biochem. J. 319, 333–336 (1996).

    Article  CAS  Google Scholar 

  15. Price, N.C. et al. Biochem. J. 338, 195–202 (1999).

    Article  CAS  Google Scholar 

  16. Hawkins, A.R., Lamb, H. K., Moore, J.D., Charles, I G. & Roberts, C.F. J. Gen. Microbiol. 139, 2891–2899 (1993).

    Article  CAS  Google Scholar 

  17. Giles, N.H. et al. Microbiol. Rev. 49, 338–358 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hawkins, A.R., Lamb, H.K., Smith, M., Keyte, J.W. & Roberts, C.F. Mol. Gen. Genet. 214, 224–231 (1988).

    Article  CAS  Google Scholar 

  19. Giles, N.H., Partridge, C.W.H., Ahmed, S.I. & Case, M.E. Proc. Natl. Acad. Sci. USA 58, 1930–1937 (1967).

    Article  CAS  Google Scholar 

  20. Hawkins, A.R., Giles, N.H. & Kinghorn, J.R. Biochem. Genet. 20, 271–286 (1982).

    Article  CAS  Google Scholar 

  21. Euverink, G.J.W., Hessels, J.W., Vrijbloed, J.W., Coggins, J.R. & Dijkhuizen, L. J. General. Microbiol. 138, 2449–2457 (1992).

    Article  CAS  Google Scholar 

  22. Philipp, W.J. et al. Proc. Natl. Acad. Sci. USA 93, 3132–3137 (1996).

    Article  CAS  Google Scholar 

  23. Tomb, J.F. et al. Nature 388, 539–547 (1997).

    Article  CAS  Google Scholar 

  24. Lamb, H.K. et al. Biochem.J. 313, 941–950 (1996).

    Article  CAS  Google Scholar 

  25. Haslam, E. Shikimic acid: metabolism and metabolites (J. Wiley & Sons, Chichester, England; 1993).

    Google Scholar 

  26. Mousdale, D.M. & Coggins, J.R. (1991) In Target sites for herbicide action (ed. Kirkwood, R. C.) 29–56 (Plenum Press, New York; 1991).

    Book  Google Scholar 

  27. Balasubramanian, S.G.M., Davies, G.M., Coggins, J.R. & Abell, C. J. Am. Chem. Soc. 113, 8945–8946 (1991).

    Article  CAS  Google Scholar 

  28. Davies, G.M. et al. Antimicrob. Agents Chemother. 38, 403–406 (1994).

    Article  CAS  Google Scholar 

  29. Tacket, C.O. et al. Vaccine 10, 443–446 (1992).

    Article  CAS  Google Scholar 

  30. Karnell, A. et al. Vaccine 11, 830–836 (1993).

    Article  CAS  Google Scholar 

  31. Otwinowski, Z. & Minor, W. Methods. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  32. Collaborative Computational Project, Number 4. Acta Crystallogr. D 50, 760–763 (1994).

  33. Brünger, A. T. X-PLOR Manual version 3.1: A system for crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1992).

    Google Scholar 

  34. Otwinowski, Z. In Isomorphous replacement and anomalous scattering. (eds. Wolf, W. Evans, P.R. & Leslie, A.G.W.) 80–85 (SERC Daresbury Laboratory, Warrington, UK; 1991).

    Google Scholar 

  35. Cowtan, K. Joint CCP4 and ESF-EACBM Newsletter on protein crystallography. 31, 24–28 (1994).

    Google Scholar 

  36. Jones, T.A., Zou, J.-Y., Cowan, S. W. & Kjelgaard, M. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  37. Gourley, D.G. et al. J. Mol. Biol. 241, 488–491 (1994).

    Article  CAS  Google Scholar 

  38. Murshudov, G.N., Dodson, E.J. & Vagin, A.A. In Macromolecular refinement (eds Dodson, E., Moore, M. & Bailey, S.) 93–104 (SERC Daresbury Laboratory, Warrington, UK; 1996).

    Google Scholar 

  39. Lamzin, V.S. & Wilson, K.S. Acta Crystallogr. D 49, 129–147 (1993).

    CAS  Google Scholar 

  40. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. Bury, B. Boys, A. Lapthorn, J. Milner-White, G. Murshudov and L.A.A. Meira for help at various stages of the work and the staff at the SRS Daresbury, Warrington, UK and the EMBL Outstation, DESY, Hamburg for providing data collection facilities. This work was supported by the Biotechnology and Biological Science Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John R. Coggins or Lindsay Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourley, D., Shrive, A., Polikarpov, I. et al. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat Struct Mol Biol 6, 521–525 (1999). https://doi.org/10.1038/9287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/9287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing