Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase

Abstract

Sulfonamides were amongst the first clinically useful antibacterial agents to be discovered. The identification of sulfanilamide as the active component of the dye Prontosil rubrum led to the synthesis of clinically useful analogues. Today sulf amethoxazole (in combination with trimethoprim), is used to treat urinary tract infections caused by bacteria such as Escherichia coli and is also a first-line treatment for pneumonia caused by the fungus Pneumocystis carinii, a common condition in AIDS patients. The site of action is the de novo f olate biosynthesis enzyme dihydropteroate synthase (DHPS) where sulfonamides act as analogues of one of the substrates, para-aminobenzoic acid (pABA). We report here the crystal structure of E.coli DHPS at 2.0 Å resolution refined to an R-factor of 0.185. The single domain of 282 residues forms an eight-stranded α/β-barrel. The 7,8-dihydropterin pyrophosphate (DHPPP) substrate binds in a deep cleft in the barrel, whilst sulfanilamide binds closer to the surface. The DHPPP ligand site is highly conserved amongst prokaryotic and eukaryotic DHPSs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blakley, R.L. & Benkovic, S.J. (eds.) in Folates and Pterins, 1, Chemistry and Biochemistry of Folates. John Wiley & Sons. Inc., NY.

  2. Richey, D.P. & Brown, G.M. The Biosynthesis of Folic Acid. IX. Purification and properties of the enzymes required for the formation of dihydropteroic acid. J. Biol. Chem. 244, 1582–1592 (1969).

    CAS  PubMed  Google Scholar 

  3. Shiota, T., Baugh, C.M., Jackson, R., & Dillard, R. The enzymatic synthesis of hydroxymethyldihydropteridine pyrophosphate and dihydrofolate. Biochemistry 8, 5022–5028 (1969).

    Article  CAS  Google Scholar 

  4. Bock, L.B., Miller, G.H., Schaper, K.-J., & Seydel, J.K., Sulfonamide structure-activity relationships in a cell-free system. 2. Proof for the formation of a sulfonamide-containing folate analog. J. Med. Chem. 17, 23–28 (1974).

    Article  CAS  Google Scholar 

  5. Brown, G.M. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J. Biol. Chem. 237, 536–540 (1962).

    CAS  PubMed  Google Scholar 

  6. Shiota, T., Disraely, M.N. & McCann, M.P. The enzymatic synthesisof folate-like compounds from hydroxymethyldihydropteridine pyrophosphate. J. Biol. Chem. 239, 2259–2266 (1964).

    CAS  PubMed  Google Scholar 

  7. Woods, D.D. The relation of p-aminobenzoic acid to the mechanism of the action of sulphanilamide. Br. J. Exp. Pathol. 21, 74–90 (1940).

    CAS  PubMed Central  Google Scholar 

  8. Then, R., & Angehrn, P., Sulfonamide-induced thymineless death in Escherichia coli. J. Gen. Microbiol. 76, 255–263 (1973).

    Article  CAS  Google Scholar 

  9. Roland, S., Ferone, R., Harvey, R.J., Styles, V.L. & Morrison, R.W. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J. Biol. Chem. 254, 10337–10345 (1979).

    CAS  PubMed  Google Scholar 

  10. Hitchings, G.H. Biochemical basis for the antimicrobial activity of Septrin. Trimethoprim/Sulfamethoxazole in Bacterial Infections (eds Bernstein, L.S. & Salter, A.J.) 7–29 (Churchill Livingstone, London, 1973)

    Google Scholar 

  11. Northey, E.H. The sulfonamides and allied compounds. American Chemical Society monograph. (Reinhold Publishing Co., New York, NY, 1948).

    Google Scholar 

  12. Mobley, H.L., Island, M.D. & Massad, G. Virulence determinants of uropathogenic Escherichia coli and proteus mirabilis. Kidney Int. S47, S129–36 (1994)

    Google Scholar 

  13. Kovacs, J.A. et al. & Masur, H. Pneumocystis carinii pneumonia: A comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Annl. Int. Med. 100, 663–671 (1984)

    Article  CAS  Google Scholar 

  14. Lopez, P., Espinosa, M., Greenberg, B. & Lacks, S.A. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J. Bacteriol. 169, 4320–4326 (1987).

    Article  CAS  Google Scholar 

  15. Sundstrvm, L., Radstrvm, P., Swedberg, G. & Skvld, O. Site-specific recombination promotes linkage between trimethoprim- and Sulfonamide resistance genes. Sequence characterization of dhfrV and sull and a recombination active locus of Tn21. Mol. Gen. Genet. 213, 191–201 (1988).

    Article  Google Scholar 

  16. Radstrvm, P. & Swedberg, G. RSF1010 and a conjugative plasmid contain sulll, one of two known genes for plasmid-borne Sulfonamide resistance dihydropteroate Synthase.Antimicrob. Agents Chemother. 32, 1684–1692 (1988).

    Article  Google Scholar 

  17. Slock, J., Stahly, D.P., Han, C.-Y., Six, E.W. & Crawford, I.P. An apparent bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J. Bacteriol. 172, 7211–7226 (1990).

    Article  CAS  Google Scholar 

  18. Dallas, W.S., Gowen, J.E., Ray, P.H., Cox, M.J. & Dev, I.K. Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100. J. Bacteriol. 174, 5961–5970 (1992).

    Article  CAS  Google Scholar 

  19. Fermir, C., Kristiansen, B.-E., Skvld, O. & Swedberg, G. Sulfonamide resistance in neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J. Bacteriol. 177 (16), 4669–4675 (1995).

    Article  Google Scholar 

  20. Banner, D.W. et al. Structure of chicken muscle triose phosphate isomerase determined crystallographicallyat 2.5E resolution using amino acid sequence data. Nature 255, 609–614 (1975).

    Article  CAS  Google Scholar 

  21. Farber, G.K. & Petsko, G.A. The evolution of alpha/beta barrel enzymes. Trends Biochem. Sci. 15, 228–234 (1990).

    Article  CAS  Google Scholar 

  22. Howard, A.J. et al. The use of an imaging proportional counter in macromolecuilar crystallography. J. Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  23. Terwilliger, T.C., Kim. S-H., & Eisenberg, D. Generalized method of determining heavy-atom positions using the difference Patterson function. Acta Crystallogr. A43, 1–5 (1987).

    Article  CAS  Google Scholar 

  24. Program of Z. Otwinoski. Maximum likelihood refinement of heavy atom parameters. Isomorphous replacement and anomalous scattering proceedings of the CCP4 Study Weekend 15–26 January 1991, S.E.R.C., Daresbsury Laboratory, Daresbury, Warrington, WA4 4AD, 80–86.

  25. Brunger, A.T., Kuriyan, J., Karplus, M. Crystallographic Rfactor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  CAS  Google Scholar 

  26. Jones, T.A. A Graphics model building and refinement system for macromolecules. J. Appl. Crystallogr. 11, 268–272 (1978).

    Article  CAS  Google Scholar 

  27. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  28. Finzel, B.C. Incorporation of fast Fourier transforms to speed restrained least-squares refinement of protein structures. J. Appl. Crystallogr. 20, 53–55 (1987).

    Article  CAS  Google Scholar 

  29. Genetics Computer Group Inc. (1994) Wisconsin Sequence Analysis Package, Version 8, Madison, Wisconsin, USA.

  30. Wallace, A.C., Laskowski, R.A. & Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Prot. Engng. 8, 127–134 (1995)

    Article  CAS  Google Scholar 

  31. Volpe, F. et al. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii appears to encode dihydropteroate synthase and hydroxymethyl-dihydropterin pyrophosphokinase. Gene 112, 213–218 (1992)

    Article  CAS  Google Scholar 

  32. Kellam, P., Dallas, W.S., Ballantine, S.P. & Delves, C.J. Functional cloning of the dihydropteroate synthase gene of Staphytococcus haemolyticus. FEMS Microbiol. Lett. 134, 165–169 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achari, A., Somers, D., Champness, J. et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Mol Biol 4, 490–497 (1997). https://doi.org/10.1038/nsb0697-490

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0697-490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing