Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanism of reductive protein unfolding

Abstract

The reductive unfolding of ribonuclease A with dithiothreitol proceeds through parallel pathways with the formation of two well-populated partially-unfolded three-disulphide intermediates. Two distinct local unfolding events rather than a global one are involved in the rate-limiting steps. These results are contrary to the current view that protein unfolding generally follows an all-or-none mechanism, and that the rate-limiting step is controlled by an extensive rearrangement of the native structure. Sequential breakage of disulphide bonds through local unfolding events is energetically more favourable than disruption of the native structure through global unfolding. The results also indicate that the oxidative refolding of ribonuclease A from the fully-reduced form proceeds through parallel conformationally-distinct transition states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T.E. The protein folding problem, in Mechanisms of Protein Folding (ed. Pain, R. H.) 1–25 (Oxford University Press, New York; 1994).

    Google Scholar 

  2. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. A. Rev. Biochem. 59. 631–660 (1990).

    Article  CAS  Google Scholar 

  3. Matthews, C.R. Pathways of protein folding. A. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  4. Fersht, A.R. Protein folding and stability: the pathway of folding of barnase. FEBS. Lett. 325, 5–16 (1993).

    Article  CAS  Google Scholar 

  5. Daggett, V. Protein degradation: the role of mixed-function oxidases. Pharmacol. Res. 4, 278–284 (1987).

    Article  CAS  Google Scholar 

  6. Creighton, T.E. Intermediates in the refolding of reduced ribonuclease A. J. molec. Biol. 129, 411–431 (1979).

    Article  CAS  Google Scholar 

  7. Wearne, S.J. & Creighton, T.E. Further experimental studies of the disulphide folding transition of ribonuclease A. Proteins Struct., Funct. Genet. 4, 251–261 (1988).

    Article  CAS  Google Scholar 

  8. Sperling, R., Burstein, Y. & Steinberg, I.Z. Selective reduction and mercuration of cystine IV-V in bovine pancreatic ribonuclease. Biochemistry 8, 3810–3820 (1969).

    Article  CAS  Google Scholar 

  9. Rothwarf, D.M. & Scheraga, H.A. Regeneration and reduction of native bovine pancreatic ribonuclease A with oxidized and reduced dithiothreitol. J. Am. chem. Soc. 113, 6293–6294 (1991).

    Article  CAS  Google Scholar 

  10. Scheraga, H.A., Konishi, Y., Rothwarf, D.M. & Mui, P.W. Toward an understanding of the folding of ribonuclease A. Proc. natn. Acad. Sci. U.S.A. 84, 5740–5744 (1987).

    Article  CAS  Google Scholar 

  11. Creighton, T.E. Toward a better understanding of protein folding pathways. Proc. natn. Acad. Sci. U.S.A. 85, 5082–5086 (1988).

    Article  CAS  Google Scholar 

  12. Rothwarf, D.M. & Scheraga, H.A. Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry 32, 2671–2679 (1993).

    Article  CAS  Google Scholar 

  13. Rothwarf, D.M. & Scheraga, H.A. Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry 32, 2680–2689 (1993).

    Article  CAS  Google Scholar 

  14. Talluri, S., Rothwarf, D.M. & Scheraga, H.A. Structural characterization of a three-disulphide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 33, 10437–10449 (1994).

    Article  CAS  Google Scholar 

  15. Laity, J.H., Shimotakahara, S. & Scheraga, H.A. Expression of wild-type and mutant bovine pancreatic ribonuclease A in Escherichia coli. Proc. natn. Acad. Sci. U.S.A. 90, 615–619 (1993).

    Article  CAS  Google Scholar 

  16. Creighton, T.E. A three-disulphide intermediate in refolding of reduced ribonuclease A with a folded conformation. FEBS Lett. 118, 283–288 (1980).

    Article  CAS  Google Scholar 

  17. Galat, A., Creighton, T.E., Lord, R.C. & Blout, E.R. Circular dichroism, raman spectroscopy, and gel filtration of trapped folding intermediates of ribonuclease. Biochemistry 20, 594–601 (1981).

    Article  CAS  Google Scholar 

  18. Blackburn, P. & Moore, S. Pancreatic ribonuclease. The Enzymes 15, 317–433 (1982).

    Article  CAS  Google Scholar 

  19. Creighton, T.E. Conformational flexibility in proteins, in Structural aspects of recognition and assembly in biological macromolecules: Proceedings of the 7th Aharon Katzir-Katchalsky conference, the Weizmann Institute of Science, (ed. Balaban, M.) 57–73 (Balaban ISS, Rehovot; 1981).

    Google Scholar 

  20. Woodward, C., Simon, I. Tüchsen, E. Hydrogen exchange and the dynamic structure of proteins. Molec. cell. Biochem. 48, 135–160 (1982).

    Article  CAS  Google Scholar 

  21. Bai, Y., Milne, J.S., Mayne, L. & Englander, S.W. Protein stability parameters measured by hydrogen exchange. Proteins Struct., Funct. Genet. 20, 4–14 (1994).

    Article  CAS  Google Scholar 

  22. Houry, W.A., Rothwarf, D.M. & Scheraga, H.A. A very fast phase in the refolding of disulphide-intact ribonuclease A: implications for the refolding and unfolding pathways. Biochemistry 33, 2516–2530 (1994).

    Article  CAS  Google Scholar 

  23. Rothwarf, D.M. & Scheraga, H.A. Equilibrium and kinetic constants for the thiol-disulphide interchange reaction between glutathione and dithiothreitol. Proc. natn. Acad. Sci. U.S.A. 89, 7944–7948 (1992).

    Article  CAS  Google Scholar 

  24. Pace, C.N., Laurents, D.V. & Thomson, J.A. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1. Biochemistry 29, 2564–2572 (1990).

    Article  CAS  Google Scholar 

  25. Ahmad, F. & Bigelow, C.C. Thermodynamics of solvation of proteins in guanidine hydrochloride. Biopolymers 29, 1593–1598 (1990).

    Article  CAS  Google Scholar 

  26. Privalov, P.L. Stability of proteins: small globular proteins. Adv. protein Chem. 33, 167–241 (1979).

    Article  CAS  Google Scholar 

  27. Mayo, S.L. & Baldwin, R.L. Guanidinium chloride induction of partial unfolding in amide proton exchange in RNase A. Science 262, 873–876 (1993).

    Article  CAS  Google Scholar 

  28. Creighton, T.E. & Goldenberg, D.P. Kinetic role of a meta-stable native-like two-disulphide species in the folding transition of bovine pancreatic trypsin inhibitor. J. molec. Biol. 179, 497–526 (1984).

    Article  CAS  Google Scholar 

  29. Mendoza, J.A., Jarstfer, M.B. & Goldenberg, D.P. Effects of amino acid replacements on the reductive unfolding kinetics of pancreatic trypsin inhibitor. Biochemistry 33, 1143–1148 (1994).

    Article  CAS  Google Scholar 

  30. Kuwajima, K., Ikeguchi, M., Sugawara, T., Hiraoka, Y. & Sugai, S. Kinetics of disulphide bond reduction in α-lactalbumin by dithiothreitol and molecular basis of superreactivity of the Cys6-Cys120 disulphide bond. Biochemistry 29, 8240–8249 (1990).

    Article  CAS  Google Scholar 

  31. Ewbank, J.J. & Creighton, T.E. Pathway of disulphide-coupled unfolding and refolding of bovine α-lactalbumin. Biochemistry 32, 3677–3693 (1993).

    Article  CAS  Google Scholar 

  32. Dill, K.A. & Shortle, D. Denatured states of proteins. A. Rev. Biochem. 60, 795–825 (1991).

    Article  CAS  Google Scholar 

  33. Carra, J.H., Anderson, E.A. & Privalov, P.L. Three-state thermodynamic analysis of the denaturation of Staphylococcal nuclease mutants. Biochemistry 33, 10842–10850 (1994).

    Article  CAS  Google Scholar 

  34. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  Google Scholar 

  35. Jennings, P.A., Finn, B.E., Jones, B.E. & Matthews, C.R. A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry 32, 3783–3789 (1993).

    Article  CAS  Google Scholar 

  36. Bruice, T.W. & Kenyon, G.L. Novel alkyl alkanethiolsulfonate sulfhydryl reagents, modification of derivatives of L-cysteine. J. protein Chem. 1, 47–58 (1982).

    Article  CAS  Google Scholar 

  37. Thannhauser, T.W., McWherter, C.A. & Scheraga, H.A. Peptide mapping of bovine pancreatic ribonuclease A by reverse-phase high-performance liquid chromatography. Analyt. Biochem. 149, 322–330 (1985).

    Article  CAS  Google Scholar 

  38. Straume, M. & Johnson, M.L., Carlo method for determining complete confidence probability distributions of estimated model parameters. Meths Enzym. 210, 117–129 (1992).

    Article  CAS  Google Scholar 

  39. Wlodawer, A., Svensson, L.A., Sjölin, L. & Gilliland, G.L. Structure of phosphate-free ribonuclease A refined at 1.2 Å. Biochemistry 27, 2705–2717 (1988).

    Article  CAS  Google Scholar 

  40. Rothwarf, D.M. & Scheraga, H.A. Regeneration of bovine pancreatic ribonuclease A. 4. Temperature dependence. Biochemistry 32, 2698–2703 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YJ., Rothwarf, D. & Scheraga, H. Mechanism of reductive protein unfolding. Nat Struct Mol Biol 2, 489–494 (1995). https://doi.org/10.1038/nsb0695-489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0695-489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing