Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid, electrostatically assisted association of proteins

Abstract

The rapid association of barnase and its intracellular inhibitor barstar has been analysed from the effects of mutagenesis and electrostatic screening. A basal association rate constant of 105 M−1 s−1 is increased to over 5×109 M−1s−1 by electrostatic forces. The association between the oppositely charged proteins proceeds through the rate-determining formation of an early, weakly specific complex, which is dominated by long-range electrostatic interactions, followed by precise docking to form the high affinity complex. This mode of binding is likely to be used widely in nature to increase association rate constants between molecules and its principles may be used for protein design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Debye, P. & Hückel, E., Zur Theorie der Elektrolyte. Physik. Z. 24, 185–206 (1923).

    CAS  Google Scholar 

  2. Noyes, R.M. Effects of diffusion rates on chemical kinetics. Prog. React. Kinet. 1, 129–160 (1961).

    CAS  Google Scholar 

  3. Eigen, M. & Hammes, G.G. Elementary steps in enzyme reactions. Adv. Enzymol. 25, 1–38 (1963).

    Google Scholar 

  4. Berg, O.G. & von Hippel, P.H. Diffusion-controlled macromolecular interactions. Ann. Rev. Biophys. Biophys. Chem. 14, 131–160 (1985).

    Article  CAS  Google Scholar 

  5. Stone, R.S., Dennis, S. & Hofsteenge, J. Quantitative evaluation of the contribution of ionic interactions to the formation of the Thrombin-Hirudin complex. Biochemistry 28, 6857–6863 (1989).

    Article  CAS  Google Scholar 

  6. von Hippel, P.H. & Berg, O.G. Facilitated target location in biological systems. J. Biol. Chem. 264, 675–678 (1989).

    CAS  PubMed  Google Scholar 

  7. Zhou, H.X. Brownian dynamics study of the influences of electrostatic interaction and diffusion of protein-protein association kenetics. Biophys. J. 64, 1711–1726 (1993).

    Article  CAS  Google Scholar 

  8. Pontius, B.W. Close encounters: why unstructured, polymeric domains can increase rates of specific macromolecules association. TIBS. 18, 181–186 (1993).

    CAS  PubMed  Google Scholar 

  9. Northrup, S.H. et al. Effects of charged amino acid mutations on the bimolecular kinetics of reduction of Yeast lso-1-ferricytochrome c by Bovine Ferrocytochrome b5 . >Biochemistry 32, 6613–6623 (1993).

    Article  CAS  Google Scholar 

  10. Guillemette, J.G. et al Analysis of the bimolecular reduction of fericytochrome c by ferrocytochrome b5 through mutagenesis and molecular modelling. Biochimie. 76, 592–604 (1994).

    Article  CAS  Google Scholar 

  11. Honig, B. & Nicholls, A. Classical electrostatics in biology and chemistry. Science 268, 1144–1149 (1995).

    Article  CAS  Google Scholar 

  12. Smoluchowski, M.V. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Z. Phys. Chem. 92, 129–168 (1918).

    Google Scholar 

  13. Northrup, S.H. & Erickson, H.P. Kinetics of protein-protein association explained by Brownian dynamic computer simulation. Proc. Natl. Acad. Sci. USA 89, 3338–3342 (1992).

    Article  CAS  Google Scholar 

  14. Hartley, R.W. Barnase and Barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14, 450–454 (1989).

    Article  CAS  Google Scholar 

  15. Schreiber, G. & Fersht, A.R. The interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry. 32, 5145–5150 (1993).

    Article  CAS  Google Scholar 

  16. Louie, G.V. & Brayer, G.D. High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J. Mol. Biol. 214, 527–555 (1990).

    Article  CAS  Google Scholar 

  17. Eltis, L.D., Herbert, R.G., Barker, P.D., Mauk, A.G. & Northrup, S.H. Reduction of horse fericytochrome c by bovine liver ferrocytochrome b 5 . 30, 3663–3674 (1991).

  18. Robinson, R.A. & Stokes, R.H. Electrolyte solutions (Butterworths, London, 1959).

    Google Scholar 

  19. Carter, P.J., Winter, G., Wilkinson, A.J. & Fersht, A.R. The use of double mutants to detect structural changes in the active site of the Tyrosyl-tRNA Synthetase (Bacillus stearothermophilus). Cell 38, 835–840 (1984).

    Article  CAS  Google Scholar 

  20. Horovitz, A. & Fersht, A.R. Co-operative interactions during protein folding. J. Mol. Biol. 224, 733–740 (1992).

    Article  CAS  Google Scholar 

  21. Schreiber, G. & Fersht, A.R. Energetics of protein-protein interactions: analysis of the barnase-barstar interface by single mutations and double mutant cycles. J. Mol. Biol. 248, 478–486 (1995).

    CAS  PubMed  Google Scholar 

  22. Nassar, M. et al The 2.2-Angstrom crystal structure of the ras-binding domain of the serine threonine kinase c-raf1 in complex with rap1A and a GTP analog. Nature. 375, 554–560 (1995).

    Article  CAS  Google Scholar 

  23. Kobe, B. & Deisenhofer, J. Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366, 751–756 (1993).

    Article  CAS  Google Scholar 

  24. Rydel, T.J. et al. The structure of a complex of recombinant hirudin and human α-thrombin. Science 245, 277–280 (1990).

    Article  Google Scholar 

  25. Gilson, M.K. & Honig, B.A. Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins Struct. Fund. Genet. 4, 7–18 (1988).

    Article  CAS  Google Scholar 

  26. Schreiber, G., Buckle, A.M. & Fersht, A.R. Stability versus function: two competing forces in the evolution of barstar. Structure 2, 945–951 (1994).

    Article  CAS  Google Scholar 

  27. Mossakowska, D.E., Nyberg, K. & Fersht, A.R. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Biochemistry 28, 3843–3850 (1989).

    Article  CAS  Google Scholar 

  28. Horovitz, A., Serrano, L., Avron, B., Bycroft, M. & Fersht, A.R. Strength and cooperativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 216, 1031–1044 (1990).

    Article  CAS  Google Scholar 

  29. Serrano, L., Horovitz, A., Avron, B., Bycroft, M. & Fersht, A.R. Estimating the contribution of engineered surface electrostatic interactions to protein stability using double-mutant cycles. Biochemistry 29, 9343–9352 (1990).

    Article  CAS  Google Scholar 

  30. Loewenthal, R., Sancho, J. & Fersht, A.R. Histidine-aromatic interactions in barnase: elevation of histidine pKa and contribution to protein stability. J. Mol. Biol. 224, 759–770 (1992).

    Article  CAS  Google Scholar 

  31. Meiering, E.M., Serrano, L. & Fersht, A.R. Effect of active site residues in barnase on activity and stability. J. Mol. Biol. 225, 585–589 (1992).

    Article  CAS  Google Scholar 

  32. Hartley, R.W. Directed mutagenesis and Barnase-Barstar recognition. Biochemistry 32, 5978–5984 (1993).

    Article  CAS  Google Scholar 

  33. Buckle, M., Schreiber, G. & Fersht, A.R., Protein-Protein Recognition: Crystal structural analysis of a barnase-barstar complex at 2.0-Å resolution. Biochemistry 33 8878–8889 (1994).

    Article  CAS  Google Scholar 

  34. Kraulis, P. MolScript, a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  35. Nicholls, A. GRASP. graphical representation and analysis of surface properties. (Columbia University, New York, 1992)

    Google Scholar 

  36. Akerlöf, G. Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc. 54, 4125 (1932).

    Article  Google Scholar 

  37. Fersht, A.R. Enzyme Structure and Mechanism (W. H. Freeman and Company, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, G., Fersht, A. Rapid, electrostatically assisted association of proteins. Nat Struct Mol Biol 3, 427–431 (1996). https://doi.org/10.1038/nsb0596-427

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0596-427

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing