Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics

Abstract

Folding of tendamistat, an inhibitor of α-amylase, is a fast two-state process accompanied by two minor slow reactions, which were assigned to prolyl isomerization. In a proline-free variant, 5% of the molecules still fold slowly with a rate constant of 2.5 s−1. This reaction is caused by a slow equilibrium between two populations of unfolded molecules. The time constant for this equilibration process, its sensitivity to LiCl and its temperature dependence identify it as a cis-trans isomerization of nonprolyl peptide bonds. Although nonprolyl peptide bonds have the cis conformation populating only 0.15% in unfolded proteins, their large number generates a significant fraction of slow-folding molecules. This emphasizes that heterogeneous populations in an unfolded protein can induce complex folding kinetics on various time scales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of proline replacements on tendamistat stability and folding.
Figure 2: Refolding kinetics of the proline-free tendamistat variant.
Figure 3: Time course of formation of the native state of proline-free tendamistat.
Figure 4: Double jump experiments to monitor the slow equilibration process in unfolded proline-free tendamistat.
Figure 5: Temperature dependence of the two folding phases.
Figure 6: Effect of LiCl on the cis-trans equilibrium of a nonprolyl peptide bond.
Figure 7: LiCl dependence of tendamistat folding.

Similar content being viewed by others

References

  1. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  2. Jackson, S.E. How do small single-domain proteins fold? Folding Des. 3, R81–R91 (1998).

    Article  CAS  Google Scholar 

  3. Baldwin, R.L. & Rose, G.D. Is protein folding hierarchic? II. Folding intermediates and transition states. Trends Biochem. Sci. 24, 77–83 (1999).

    Article  CAS  Google Scholar 

  4. Brandts, J.F., Halvorson, H.R. & Brennan, M. Consideration of the possibility that the slow step in protein denaturation reactions is due to cis–trans isomerism of proline residues. Biochemistry 14, 4953–4963 (1975).

    Article  CAS  Google Scholar 

  5. Schmid, F.X. & Baldwin, R.L. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc. Natl. Acad. Sci. USA 75, 4764–4768 (1978).

    Article  CAS  Google Scholar 

  6. Colon, W., Wakem, L.P., Sherman, F. & Roder, H. Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry 36, 12535–12541 (1997).

    Article  CAS  Google Scholar 

  7. Yeh, S.-R., Takahashi, S., Fan, B. & Rousseau, D.L. Ligand exchange in unfolded cytochrome c. Nature Struct. Biol. 4, 51–56 (1998).

    Article  Google Scholar 

  8. Pflugrath, J., Wiegand, I., Huber, R. & Vértesy, L. Crystal structure determination, refinement and the molecular model of the α-amylase inhibitor Hoe-467A. J. Mol. Biol. 189, 383–386 (1986).

    Article  CAS  Google Scholar 

  9. Schönbrunner, N., Koller, K.-P. & Kiefhaber, T. Folding of the disulfide-bonded β-sheet protein tendamistat: Rapid two-state folding without hydrophobic collapse. J. Mol. Biol. 268, 526–538 (1997).

    Article  Google Scholar 

  10. Tanford, C. Protein denaturation. Part B. The transition from native to denatured state. Adv. Prot. Chem. 23, 218–282 (1968).

    Google Scholar 

  11. Schmid, F.X. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates. Biochemistry 22, 4690–4696 (1983).

    Article  CAS  Google Scholar 

  12. Kiefhaber, T. In Methods in molecular biology, vol. 40 (ed. Shirley, B.A.) 313–341 (Humana Press, Totowa, NJ; 1995).

    Google Scholar 

  13. Szabo, Z.G. In Comprehensive chemical kinetics, vol. 2 (eds Bamford, C.H. & Tipper, C.F.H.) 1–80 (Elsevier Publishing Company, Amsterdam; 1969).

    Google Scholar 

  14. Kiefhaber, T., Quaas, R., Hahn, U. & Schmid, F.X. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization. Biochemistry 29, 3053–3061 (1990).

    Article  CAS  Google Scholar 

  15. Balbach, J. & Schmid, F.X. In Protein folding: frontiers in molecular biology (ed. Pain, R.) 212–249 (Oxford University Press, Oxford; 2000).

    Google Scholar 

  16. Nall, B.T., Garel, J.-R. & Baldwin, R.L. Test of the extended two-state model for the kinetic intermediates observed in the folding transition of ribonuclease A. J. Mol. Biol. 118, 317–330 (1978).

    Article  CAS  Google Scholar 

  17. De Young, L.R. et al. RhNGF slow unfolding is not due to proline isomerization: Possibility of a cystine knot loop-threading mechanism. Protein Sci. 5, 1554–1566 (1996).

    Article  CAS  Google Scholar 

  18. Otting, G., Liepinsh, E. & Wüthrich, K. Disulfide bond isomerization in BPTI and BPTI(G36S): An NMR study of correlated mobility in proteins. Biochemistry 32, 3571–3582 (1993).

    Article  CAS  Google Scholar 

  19. Fraser, R.R., Boussard, G., Saunder, J.K., Lambert, J.B. & Mixan, C.E. Barriers to rotation about the sulfur –sulfur bond in acyclic disulfides. J. Am. Chem. Soc. 92, 3822–3823 (1971).

    Article  Google Scholar 

  20. Scherer, G., Kramer, M.L., Schutkowski, M., Reimer, U. & Fischer, G. Barriers to rotation of secondary amide peptide bonds. J. Am. Chem. Soc. 120, 5568–5574 (1998).

    Article  CAS  Google Scholar 

  21. Odefey, C., Mayr, L. & Schmid, F.X. Nonprolyl cis/trans peptide bond isomerization as a rate-determinig step in protein unfolding and refolding. J. Mol. Biol. 245, 69–78 (1995).

    Article  CAS  Google Scholar 

  22. Pohl, F.M. Temperature-dependence of the kinetics of folding of chymotrypsinogen A. FEBS Lett. 65, 293–296 (1976).

    Article  CAS  Google Scholar 

  23. Radzicka, A., Pedersen, L. & Wolfenden, R. Influence of solvent water on protein folding: free energies of solvation of cis and trans peptides are nearly identical. Biochemistry 27, 4538–4541 (1988).

    Article  CAS  Google Scholar 

  24. Schmid, F.X. Proline isomerization in unfolded ribonuclease A. The equilibrium between fast-folding and slow-folding species is independent of temperature. Eur. J. Biochem. 128, 77–80 (1982).

    Article  CAS  Google Scholar 

  25. Fischer, G., Heins, J. & Barth, A. The conformation around the peptide bond between P1 and P2 positions is important for catalytic activity of some proline-specific proteases. Biophys. Biochim. Acta 742, 452–462 (1983).

    Article  CAS  Google Scholar 

  26. Kofron, J.L., Kuzmic, P., Kishore, V., Colon-Bonilla, E. & Rich, D.H. Determination of kinetic constants for peptidyl prolyl cistrans isomerases by an improved spectrophotometric assay. Biochemistry 30, 6127–6134 (1991).

    Article  CAS  Google Scholar 

  27. Reimer, U. et al. Side-chain effects on peptidyl-prolyl cis/trans isomerization. J. Mol. Biol. 279, 449–460 (1998).

    Article  CAS  Google Scholar 

  28. Levitt, M. Effect of proline residues on protein folding. J. Mol. Biol. 145, 251–263 (1981).

    Article  CAS  Google Scholar 

  29. Brandts, J.F., Brennan, M. & Lin, L.-N. Unfolding and refolding occur much faster for a proline-free protein than for most proline-containing proteins. Proc. Natl. Acad. Sci. USA 74, 4178–4181 (1977).

    Article  CAS  Google Scholar 

  30. Herning, T., Yutani, K., Taniyama, Y. & Kikuchi, M. Effect of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cistrans isomerization. Biochemistry 30, 9882–9891 (1991).

    Article  CAS  Google Scholar 

  31. Walkenhorst, W.F., Green, S. & Roder, H. Kinetic evidence for folding and unfolding intermediates in staphylococcal nuclease. Biochemistry 36, 5795–5805 (1997).

    Article  CAS  Google Scholar 

  32. Maki, K., Ikura, T., Hayano, T., Takahashi, N. & Kuwajima, K. Effects of proline mutations on the folding of staphylococcal nuclease. Biochemistry 38, 2213–2223 (1999).

    Article  CAS  Google Scholar 

  33. Weiss, M.S., Jabs, A. & Hilgenfeld, R. Peptide bonds revisited. Nature Struct. Biol. 5, 676 (1998).

    Article  CAS  Google Scholar 

  34. Thirumalai, D. In Statistical mechanics, protein structure, and protein substrate interactions (ed. Doniach, S.) 115–134 (Plenum Press, New York, NY; 1994).

    Book  Google Scholar 

  35. Chan, H.S. & Dill, K.A. Transition states and folding dynamics of proteins and heteropolymers. J. Chem. Phys. 100, 9238–9257 (1994).

    Article  Google Scholar 

  36. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Funnels, pathways, and the energy landscape of protein folding: A synthesis. Prot. Struct. Funct. Genet. 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  37. Sabelko, J., Ervin, J. & Gruebele, M. Observation of strange kinetics in protein folding. Proc. Natl. Acad. Sci. USA 96, 6031–6036 (1999).

    Article  CAS  Google Scholar 

  38. Haas-Lauterbach, S. et al. High yield fermentation and purification of tendamistat disulfide analogues secreted by Streptomyces lividans. Appl. Microbiol. Biotech. 38, 719–727 (1993).

    Article  CAS  Google Scholar 

  39. Santoro, M.M. & Bolen, D.W. Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl α-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  40. Renner, M., Hinz, H.-J., Scharf, M. & Engels, J.W. Thermodynamics of unfolding of the α-amylase inhibitor tendamistat: correlations between accessible surface area and heat capacity. J. Mol. Biol. 223, 769–779 (1992).

    Article  CAS  Google Scholar 

  41. Bieri, O. et al. The speed limit for protein folding measured by triplet–triplet energy transfer. Proc. Natl. Acad. Sci. USA 96, 9597–9601 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kiefhaber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pappenberger, G., Aygün, H., Engels, J. et al. Nonprolyl cis peptide bonds in unfolded proteins cause complex folding kinetics. Nat Struct Mol Biol 8, 452–458 (2001). https://doi.org/10.1038/87624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/87624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing