Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two energetically disparate folding pathways of α-lytic protease share a single transition state

Abstract

The Lysobacter enzymogenes α-lytic protease (αLP) is synthesized with a 166 amino acid pro region (Pro) that catalyzes the folding of the 198 amino acid protease into its native conformation. An extraordinary feature of this system is the very high energy barrier (ΔG = 30 kcal mol−1) that effectively prevents αLP from folding in the absence of Pro (t1/2 = 1800 years). A pair of mutations has been isolated in the protease that completely suppresses the catalytic defect incurred in Pro by truncation of its last three amino acids. These mutations also accelerate the folding of αLP in the absence of Pro by 400-fold. An energetic analysis of the two folding reactions indicates that the mutations stabilize the transition states of both the catalyzed and uncatalyzed folding reactions by 3 kcal mol−1. This finding points to a single transition state for these two distinct and energetically disparate folding pathways, and raises the possibility that all αLP folding pathways share the same transition state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Catalyzed folding by Pro-3 is accelerated for αLP R102H/G134S.
Figure 2: αLP R102H/G134S suppresses completely the folding defect in Pro-3.
Figure 3: The rate of uncatalyzed folding of αLP R102H/G134S is greatly enhanced.

Similar content being viewed by others

References

  1. Eder, J. & Fersht, A.R. Molec. Microbiol. 16 , 609–614 (1995).

    Article  CAS  Google Scholar 

  2. Baker, D., Shiau, A.K. & Agard, D.A. Curr. Opin. Cell Biol. 5, 966 –970 (1993).

    Article  CAS  Google Scholar 

  3. Shinde, U. & Inouye, M. Intramolecular chaperones and protein folding (R.G. Landes, Austin, Texas; 1995).

  4. Cunningham, E.L., Jaswal, S.S., Sohl, J.L. & Agard, D.A. Proc. Natl. Acad. Sci. 0USA 96, 11008–11014 (1999).

    Article  CAS  Google Scholar 

  5. Sohl, J.L. & Agard, D.A. In Intramolecular chaperones and protein folding (eds Shinde, U. & Inouye, M.) 61– 83 (R.G. Landes, Austin, Texas; 1995).

    Google Scholar 

  6. Baker, D., Silen, J.L. & Agard, D.A. Proteins 12, 339– 344 (1992).

    Article  CAS  Google Scholar 

  7. Baker, D., Sohl, J.L. & Agard, D.A. Nature 356, 263– 265 (1992).

    Article  CAS  Google Scholar 

  8. Sohl, J.L., Jaswal, S.S. & Agard, D.A. Nature 395, 817– 819 (1998).

    Article  CAS  Google Scholar 

  9. Peters, R.J. et al. Biochemistry 37, 12058– 12067 (1998).

    Article  CAS  Google Scholar 

  10. Baker, D. & Agard, D.A. Biochemistry 33, 7505–7509 (1994).

    Article  CAS  Google Scholar 

  11. Chan, H.S. & Dill, K.A. Proteins 30, 2–33 (1998).

    Article  CAS  Google Scholar 

  12. Dill, K.A. & Chan, H.S. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  13. Onuchic, J.N., Socci, N.D., Luthey-Schulten, Z. & Wolynes, P.S. Folding & Design 1, 441–450 (1996).

    Article  CAS  Google Scholar 

  14. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Proteins 21, 167–195 ( 1995).

    Article  CAS  Google Scholar 

  15. Goldbeck, R.A., Thomas, Y.G., Chen, E., Esquerra, R.M. & Kliger, D.S. Proc. Natl. Acad. Sci. USA 96, 2782–2787 (1999).

    Article  CAS  Google Scholar 

  16. Weissman, J.S. Chemistry & Biology 2, 255–260 (1995).

    Article  CAS  Google Scholar 

  17. Tan, Y.J., Oliveberg, M. & Fersht, A.R. J. Mol. Biol. 264, 377– 389 (1996).

    Article  CAS  Google Scholar 

  18. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T. Nature Struct. Biol. 4, 305–310 (1997).

    Article  CAS  Google Scholar 

  19. Wildegger, G. & Kiefhaber, T. J. Mol. Biol. 270, 294–304 (1997).

    Article  CAS  Google Scholar 

  20. Martinez, J.C., Pisabarro, M.T. & Serrano, L. Nature Struct. Biol. 5, 721– 729 (1998).

    Article  CAS  Google Scholar 

  21. Sohl, J.L., Shiau, A.K., Rader, S.D., Wilk, B.J. & Agard, D.A. Biochemistry 36, 3894– 3902 (1997).

    Article  CAS  Google Scholar 

  22. Miller, J.H. A short course in bacterial genetics (Cold Spring Harbor Laboratory Press, Plainview, New York; 1992).

    Google Scholar 

  23. Brisette, J.L., Russel, M., Weiner, L. & Model, P. Proc Natl. Acad. Sci. USA 87, 862–866 ( 1990).

    Article  Google Scholar 

  24. Lauder, S.D. & Kowalczykowski, S.C. J. Mol. Biol. 234, 72–86 (1993).

    Article  CAS  Google Scholar 

  25. Bianco, P.R. & Weinstock, G.M. Nucleic Acids Res. 24, 4933–4939 (1996).

    Article  CAS  Google Scholar 

  26. Mace, J.E. & Agard, D.A. J. Mol. Biol. 254, 720–736 (1995).

    Article  CAS  Google Scholar 

  27. Mace, J.E., Wilk, B.J. & Agard, D.A. J. Mol. Biol. 251, 116– 134 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Cunningham, J. Sohl, and B. Wilk for assistance in protein preparation, and R. Peters, J. Sohl, and A. Shiau for many helpful discussions. We thank D. Fraenkel and C. Gross for strains of E. coli from their laboratory collections, C. Gross for bacteriophage P1 and molecular biology reagents. DNA sequencing was performed at the Howard Hughes Medical Institute DNA Facility. E. Cunningham and S. Jaswal provided critical commentary on the manuscript. This work was supported by the Howard Hughes Medical Institute. A.I.D. was supported by postdoctoral fellowships from the American Cancer Society, the Howard Hughes Medical Institute, and a National Cancer Institute National Institutes of Health Institutional Training Grant administered through the Department of Biochemistry and Biophysics at UCSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Agard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derman, A., Agard, D. Two energetically disparate folding pathways of α-lytic protease share a single transition state. Nat Struct Mol Biol 7, 394–397 (2000). https://doi.org/10.1038/75172

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75172

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing