Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural analysis of WW domains and design of a WW prototype

Abstract

Two new NMR structures of WW domains, the mouse formin binding protein and a putative 84.5 kDa protein from Saccharomyces cerevisiae, show that this domain, only 35 amino acids in length, defines the smallest monomeric triple-stranded antiparallel β-sheet protein domain that is stable in the absence of disulfide bonds, tightly bound ions or ligands. The structural roles of conserved residues have been studied using site-directed mutagenesis of both wild type domains. Crucial interactions responsible for the stability of the WW structure have been identified. Based on a network of highly conserved long range interactions across the β-sheet structure that supports the WW fold and on a systematic analysis of conserved residues in the WW family, we have designed a folded prototype WW sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of WW sequences.
Figure 2: Pattern of secondary structure NOEs observed for Yap65WW (black), FBP28WW (green), YJQ8WW (red) and the WW prototype (blue).
Figure 3: Structures of the a, FBP28WW, b, YJQ8WW, and c, WW prototype domains.
Figure 4: Spectroscopic properties of the WW prototype.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Bork, P., Schultz, J. & Ponting, C.P. Trends Biochem. Sci. 22, 296–298 (1997).

    Article  CAS  Google Scholar 

  2. Doolittle, R. Annu. Rev. Biochem. 64, 287–314 (1995).

    Article  CAS  Google Scholar 

  3. Pawson, T. Nature 373, 573–580 (1995).

    Article  CAS  Google Scholar 

  4. Chen, H.I. & Sudol, M. Proc. Natl. Acad. Sci. USA 92, 7819–7823 (1995).

    Article  CAS  Google Scholar 

  5. Sudol, M. et al. J. Biol. Chem. 270, 14733–14741 (1995).

    Article  CAS  Google Scholar 

  6. Sudol, M., Chen, H.I., Bougeret, C., Einbond, A. & Boork, P. FEBS Lett. 369, 67–71 (1995).

    Article  CAS  Google Scholar 

  7. Macias, M.J. et al. Nature 382, 646–649 (1996).

    Article  CAS  Google Scholar 

  8. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  9. Chan, D.C., Bedford, M.T. & Leder, P. EMBO J. 15, 1045–1054 (1996).

    Article  CAS  Google Scholar 

  10. Thompson, J.D., Higgins, D.G. & Gibson, T.J. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  11. Fasman, G.D. Circular dichroism and the conformational analysis of biomolecules. (Plenum Press, New York and London; 1996).

    Book  Google Scholar 

  12. Viguera, A.R., Martinez, J.C., Filimonov, V.V., Mateo, P.L. & Serrano, L. Biochemistry 33, 2142–2150 (1994).

    Article  CAS  Google Scholar 

  13. Koepf, E.K., Petrassi, H.M., Sudol, M. & Kelly, J.W. Protein Sci. 8, 841–853 (1999).

    Article  CAS  Google Scholar 

  14. Gronenborn, A.M. & Clore, G.M. Science 263, 536 (1994).

    Article  CAS  Google Scholar 

  15. Dill, K., Fiebig, K.M. & Chan, H.S. Proc. Natl. Acad. Sci. USA 90, 1942–1946 (1993).

    Article  CAS  Google Scholar 

  16. Jeener, J., Meier, B.H., Bachmann, P. & Ernst, R.R. J. Chem. Phys. 71, 4546–4553 (1979).

    Article  CAS  Google Scholar 

  17. Braunschweiler, L. & Ernst, R.R. J. Magn. Reson. 53, 521–529 (1983).

    CAS  Google Scholar 

  18. Wüthrich, K. NMR of proteins and nucleic acids (Wiley Press, New York; 1986).

    Book  Google Scholar 

  19. Eccles, C., Güntert, P., Billeter, M. & Wüthrich, K. J. Biomol. NMR 1, 111–130 (1991).

    Article  CAS  Google Scholar 

  20. Nilges, M. Curr. Opin. Struct. Biol. 6, 617–23 (1996).

    Article  CAS  Google Scholar 

  21. Nilges, M., Macias, M.J., O'Donoghue, S.I. & Oschkinat, H. J. Mol. Biol. 269, 408–422 (1997).

    Article  CAS  Google Scholar 

  22. Laskowski, R.A., Rullman, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR. 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  23. Vriend, G. J. Mol. Graph. 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  24. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  Google Scholar 

  25. Koradi, R., Billeter, M. & Wüthrich, K. J. Mol. Graph. 14, 29–32 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank P. Chambon and the IGBMC-LGME-U.184-ULP for the mouse embryonic day 10 cDNA library, J. Ashurst and S. Moulton for sample preparation, M. Hyvönen for the pGAT2 expression vector and Bruker Analytik GMBH Karlsruhe for measurement time on the DRX-800 MHz spectrometer. The authors are very grateful to J. Castresana, H. Domingues, J. Dixon and R. Wade for useful comments. C.C. was supported by a grant from the Spanish Ministerio de Educacion y Cultura.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria J. Macias or Hartmut Oschkinat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macias, M., Gervais, V., Civera, C. et al. Structural analysis of WW domains and design of a WW prototype. Nat Struct Mol Biol 7, 375–379 (2000). https://doi.org/10.1038/75144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing