Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NMR evidence for slow collective motions in cyanometmyoglobin

Abstract

Residual dipolar couplings observed in NMR spectra at very high magnetic fields have been measured to a high degree of accuracy for the paramagnetic protein cyanometmyoglobin. Deviations of these measurements from predictions based on available crystallographic and solution structures are largely systematic and well correlated within a given helix of this highly α-helical protein. These observations can be explained by invoking collective motion and small displacements of representative helices from their reported average positions in the solid state. Thus, the measurements appear to be capable of providing important insights into slower, collective protein motions, which are likely to be important for function, and which have been difficult to study using established experimental techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perutz, M.F. & Mathews, F.S. X-ray study of azide methaemoglobin. J. Mol. Biol. 21, 199 (1966).

  2. Karplus, M. & McCammon, J.A. Dynamics of Proteins: Elements and Function. Ann. Rev. Biochem. 53, 263–300 (1983).

    Article  Google Scholar 

  3. Frauenfelder, H., Parak, F. & Young, R.D. Conformational substates in proteins. Ann. Rev. Biophys. Biophys. Chem. 17, 451–479 (1988).

    Article  CAS  Google Scholar 

  4. Drenth, J. Principles of Protein X-Ray Crystallography 1–311 (Springer-Verlag, New York, 1994).

    Google Scholar 

  5. Peng, J.W. & Wagner, G. in Nuclear Magnetic Resonance Probes of Molecular Dynamics (ed. Tycko, R.) 373–454 (Kluwer Academic, Dordrecht, 1994).

    Book  Google Scholar 

  6. Smith, J.C. Protein dynamics: comparison of simulations with inelastic neutron scattering experiments. Quart. Rev. Biophys. 24, 227–291 (1991).

    Article  CAS  Google Scholar 

  7. Doster, W., Cusack, S. & Petry, W. Dynamical transition of myoglobin revealed by inelastic neutron scattering. Nature 337, 754–756 (1989).

    Article  CAS  Google Scholar 

  8. Caspar, D.L.D., Clarage, J., Salunke, D.M. & Clarage, M. Liquid-like movements in crystalline insulin. Nature 332, 659–662 (1988).

    Article  CAS  Google Scholar 

  9. Thüne, T. & Badger, J. Thermal diffuse x-ray scattering and its contribution to understanding protein dynamics. Prog. Biophys. Molec. Biol. 63, 251–276 (1995).

    Article  Google Scholar 

  10. Nienhaus, G.U., Heinzl, J., Huenges, E. & Parak, F. Protein crystal dynamics studied by time-resolved analysis of X-Ray diffuse scattering. Nature 338, 665–666 (1989).

    Article  CAS  Google Scholar 

  11. Carlson, M.L., Regan, R.M. & Gibson, Q.H. Distal cavity fluctuations in myoglobin: Protein motion and ligand diffusion. Biochemistry 35, 1125–1136 (1996).

    Article  CAS  Google Scholar 

  12. Steinbach, P.J. & Brooks, B.R. Hydrated myoglobin's anharmonic fluctuations are not primarily due to dihedral transitions. Proc. Natl. Acad. Sci. USA 93, 55–59 (1996).

    Article  CAS  Google Scholar 

  13. Clarage, J.B., Romo, T., Andrews, B.K., Pettitt, B.M. & Phillips Jr., G.N. A sampling problem in molecular dynamics simulations of macromolecules. Proc Natl. Acad. Sci. USA 92, 3288–3292 (1995).

    Article  CAS  Google Scholar 

  14. Chandrasekhar, I., Clore, G.M., Szabo, A., Gronenborn, A.M. & Brooks, B.R. A 500ps molecular dynamics simulation study of interleukin 1b in water. Correlation with nuclear magnetic resonance spectroscopy and crystallography. J. Mol. Biol. 226, 239–250 (1992).

    Article  CAS  Google Scholar 

  15. Kneller, G.R. & Smith, J.C. Liquid-like Side-chain Dynamics in Myoglobin. J. Mol. Biol. 242, 181–185 (1994).

    Article  CAS  Google Scholar 

  16. Elamrani, S., Berry, M.B., Phillips Jr., G.N. & McCammon, J.A. Study of global motions in proteins by weighted masses molecular dynamics: adenylate kinase as a test case. Proteins 25, 79–88 (1996).

    Article  CAS  Google Scholar 

  17. Amadei, A., Linssen, A.B.M. & Berendsen, H.J.C. Essential dynamics of proteins. Proteins 17, 412–425 (1993).

    Article  CAS  Google Scholar 

  18. Feher, V.A., Baldwin, E.P. & Dahlquist, F.W. Access of ligands to cavities within the core of a protein is rapid. Nature Struct. Biol. 3, 516–521 (1996).

    Article  CAS  Google Scholar 

  19. Tilton Jr., R.F. & Kuntz Jr., I.D. Nuclear magnetic resonance studies of Xenon-129 with myoglobin and hemoglobin. Biochemistry 21, 6850–6857 (1982).

    Article  CAS  Google Scholar 

  20. Tolman, J.R., Flanagan, J.M., Kennedy, M.A. & Prestegard, J.H. Nuclear magnetic dipole interactions in field-oriented proteins: Information for structure determination in solution. Proc. Natl. Acad. Sci. USA 92, 9279–9283 (1995).

    Article  CAS  Google Scholar 

  21. Tjandra, N., Grzesiek, S. & Bax, A. Magnetic field dependence of nitrogen-proton J splittings in 15N-enriched human ubiquitin resulting from relaxation interference and residual dipolar coupling. J. Am. Chem. Soc. 118, 6264–6272 (1996).

    Article  CAS  Google Scholar 

  22. Lohman, J.A.B. & MacLean, C. Alignment effects on high resolution NMR spectra, induced by the magnetic field. Chem. Phys. 35, 269–274 (1978).

    Article  CAS  Google Scholar 

  23. Bastiaan, E.W., MacLean, C., Zijl, P.C.M.v. & Bothner-By, A.A. High-resolution NMR of liquids and gases: Effects of magnetic-field-induced molecular alignment. Ann. Rep. NMR Spect. 19, 35–77 (1987).

    Article  CAS  Google Scholar 

  24. Rajarathnam, K., LaMar, G.N., Chiu, M.L. & Sligar, S.G. Determination of the orientation of the magnetic axes of the cyano-metMb complexes of point mutants of myoglobin by solution 1H NMR: Influence of His E7-Gly and Arg CD3-Gly substitutions. J. Am. Chem. Soc. 114, 9048–9058 (1992).

    Article  CAS  Google Scholar 

  25. Cheng, X. & Schoenborn, B.P. Neutron diffraction study of carbonmono-xymyoglobin. J. Mol. Biol. 220, 381–399 (1991).

    Article  CAS  Google Scholar 

  26. Tolman, J.R. & Prestegard, J.H. A quantitative J-Correlation experiment for the accurate measurement of one-bond amide 15N-1H couplings in proteins. J. Magn. Reson. B 112, 245–252 (1996).

    Article  CAS  Google Scholar 

  27. Tolman, J.R. & Prestegard, J.H. Measurement of amide 15N-1H one-bond couplings in proteins using accordion heteronuclear-shift-correlation experiments. J. Magn. Reson. B 112, 269–274 (1996).

    Article  CAS  Google Scholar 

  28. Kuriyan, J., Wilz, S., Karplus, M. & Petsko, G.A. X-Ray structure and refinement of carbon-monoxy (Fe II)-myoglobin at 1.5 Å resolution. J. Mol. Biol. 192, 133–154 (1986).

    Article  CAS  Google Scholar 

  29. Ösapay, K., Theriault, Y., Wright, P.E. & Case, D.A. Solution structure of carbonmonoxy myoglobin determined from nuclear magnetic resonance distance and chemical shift constraints. J. Mol. Biol. 244, 183–197 (1994).

    Article  Google Scholar 

  30. Lipari, G. & Szabo, A. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys. J. 30, 489–506 (1980).

    Article  CAS  Google Scholar 

  31. Bothner-By, A.A., et al. High-field orientation effects in the high-resolution proton NMR spectra of diverse porphyrins. Magn. Reson. Chem. 23, 935–938 (1985).

    Article  CAS  Google Scholar 

  32. Zurcher, R.F. The cause and calculation of proton chemical shifts in non-conjugated organic compounds. Prog. NMR Spectrosc. 2, 205–257 (1967).

    Article  Google Scholar 

  33. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolman, J., Flanagan, J., Kennedy, M. et al. NMR evidence for slow collective motions in cyanometmyoglobin. Nat Struct Mol Biol 4, 292–297 (1997). https://doi.org/10.1038/nsb0497-292

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0497-292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing