Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase

A Corrigendum to this article was published on 01 October 1995

Abstract

Here we investigate the structure of the two types of copper site in nitrite reductase from Alcaligenes xylosoxidans, the molecular organisation of the enzyme when the type-2 copper is absent, and its mode of substrate binding. X-ray absorption studies provide evidence for a fourth ligand at the type-2 Cu, that substrate binds to this site and indicates that this binding does not change the type-1 Cu centre. The substrate replaces a putative water ligand and is accommodated by a lengthening of the Cu–histidine bond by approximately 0.08 Å. Modelling suggests a similarity between this unusual type-2 Cu site and the Zn site in carbonic anhydrase and that nitrite is anchored by hydrogen bonds to an unligated histidine present in the type-2 Cu cavity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Payne, W.J. in Denitrification in the Nitrogen Cycle (ed. Golterman, H.L.) 47–65 (Plenum, New York; 1985)

    Google Scholar 

  2. Hochstein, L.I. & Tomlinson, G.A. A. Rev. Microbiol. 42, 231–261 (1989).

    Google Scholar 

  3. Zumft, W.G. in The Prokaryotes (eds Barlows, A. et al.) 534–553 (Springer-verlag, New York; 1991)

    Google Scholar 

  4. Ye, R.W., Fries, M.R., Bezborodnikov, S.G., Averill, B.A. & Tiedje, J.M. Characterization of the structural gene encoding a copper-containing nitrite reductase and homology of this gene to DNA of other denitrifiers. Appl. environ. Microbiol. 59, 250–254 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zumft, W.G., Gotzmann, D.J. & Kroneck, P.M.H. Type 1, blue copper protein constitute a respiratory nitrite reducing System in Pseudomonas aureofaciens. E. J. Biochem. 168, 301–307 (1987).

    CAS  Google Scholar 

  6. Fenderson, F.F., Kumar, S., Adman, E.T., Lui, M.Y., Payne, W.J. & LeGall, J. Amino acid sequence of nitrite reductase: A copper protein from Achromobacter cycloclastes. Biochemistry 30, 7180–7185 (1986).

    Google Scholar 

  7. Nishiyama, M. et al. Cloning and characterisation of a nitrite reductase gene from Alcaligenes faecalis and its expression in Escherichia coli.. J. gen. Microbiol. 139, 725–733 (1993).

    CAS  PubMed  Google Scholar 

  8. Godden, J.W. et al. The 2.3Å X-ray structure of nitrite reductase from Anchromobactercycloclastes. Science 253, 438–442 (1991).

    CAS  PubMed  Google Scholar 

  9. Grossmann, J.G. et al. X-ray scattering using synchrotron radiation shows nitrite reductase from Achromabactor xylosoxidans to be a trimer in solution. Biochemistry 32, 7360–7366 (1993).

    CAS  PubMed  Google Scholar 

  10. Abraham, Z.H.L., Lowe, D.J. & Smith, B.E. Purification and characterisation of the dissimilatory nitrite reductase from Alcaligenes xylosoxidans subsp xylosoxidans (NCIMB 11015): Evidence for the presence of both type 1 and type 2 copper centres. Biochem. J. 296, 885(1993).

    Google Scholar 

  11. Dodd, F.E. et al. Structural studies of copper proteins. Daresbury Annual Report 221 (1993).

  12. Kokimota, M. et al. X-ray structure and site directed mutagenesis of a nitrite reductase from alcaligenes faecalis-S6 - roles of 2 copper atoms in nitrite reduction. Biochemistry 33, 5246–5252 (1994).

    Google Scholar 

  13. Spiro, T.G. Copper Proteins. (Wiley, New York; 1981)

    Google Scholar 

  14. Adman, E. Copper protein structures in Advances in Protein Chemistry (eds Anfinsen, C.B. et al.) 145–197 (Academic Press Ltd, London; 1991)

    Google Scholar 

  15. Howes, B.D. et al. EPR and electron nuclear double resonance (ENDOR) studies show nitrite binding to the Type 2 copper centres of the dissimilatory nitrite reductase of Alcaligenes xylosoxidans (NCIMB 11015). Biochemistry 33, 3171–3177(1994).

    CAS  PubMed  Google Scholar 

  16. Libby, E. & Averill, B.A. Evidence that the type-2 copper centers are the site of nitrite reduction by Achromobacter-cycloclastes nitrite reductase. Biochem. biophys. Res. Commun. 187, 1529–1535 (1992).

    CAS  PubMed  Google Scholar 

  17. Sano, M. & Matsubara, T. Copper site of nitrite reductase from AlcaligenesSp. Structural evidence from X-ray absorption spectroscopy. Chem. Letts 2121–2124 (1984).

    Google Scholar 

  18. Sano, M. & Matsubara, T. Structural change in the one-electron oxidation -reduction at the copper site in nitrite reductase. Evidence from EXAFS. Inorg. chim. Acta. 152, 53–54 (1988).

    CAS  Google Scholar 

  19. Suzuki, S. et al. Spectroscopic evidence for a copper-nitrosyl intermediate in nitrite reduction by blue copper-containing nitrite reductase. Biochem. biophys. Res. Commun. 164, 1366–1372 (1989).

    CAS  PubMed  Google Scholar 

  20. Hasnain, S.S. Application of EXAFS to biochemical systems. Topics Curr. Chem. 147, 7 3 (1988).

    Google Scholar 

  21. Lindley, P.F., Garratt, R.C. & Hasnain, S.S. EXAFS and crystallographic studies of metalloproteins. in Synchrotron Radiation and Biophysics (ed. Hasnain, S.S.) 63 (Ellis Norwood Ltd., Chichester, U.K.; 1990)

    Google Scholar 

  22. Dent, A.J., Beyersmann, D., Block, C. & Hasnain, S.S. Two different zinc sites in bovine 5-aminolevulinate dehdratase distinguised by EXAFS. Biochemistry 29, 7822–7828 (1990).

    CAS  PubMed  Google Scholar 

  23. Tullius, T.D., Frank, P. & Hodgson, K.O. Characterisation of the blue copper site in oxidised azurin by extended X-ray absorption fine structure: determination of a short Cu-S distance. Proc. natn Acad. Sci. U.S.A. 75, 4069–4073 (1978).

    CAS  Google Scholar 

  24. Peisach, J., Powers, L., Blumberg, W.E. & Chance, B. Stellacyanin: studies on the metal binding site using X-ray absorption spectroscopy. Biophys. J. 38, 277–285(1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lommen, A., Pandya, K.I., Koningsberger, D.C. & Canters, G.W. EXAFS analysis of the pH dependence of the blue-copper site in amicyanin from Thiobadllus versutus. Biochim. biophys. Acta 1076, 439–447. (1991).

    CAS  PubMed  Google Scholar 

  26. Murphy, L.M. et al. Structural characterisation of azurin from Pseudomonas aeruginosa and some of its methionine-121 mutants. Biochemistry 32, 1965–1975 (1993).

    CAS  PubMed  Google Scholar 

  27. Gurman, S.J., Binsted, N. & Ross, I. A rapid, exact curved-wave theory for EXAFS calculations: II. The multiple scattering contributions. J. Phys. Chem. C19, 1845–1861 (1986).

    Google Scholar 

  28. Pantoliano, M.W., Valentine, J.S. & Nafie, L.A. Spectroscopic studies of copper(II) bound at the native copper site or substituted at the native zinc site of bovine erythrocuprein (superoxide dismutase). J. Am. chem. Soc. 104, 6310–6317 (1982).

    CAS  Google Scholar 

  29. Solomon, E.I., Penfield, K.W. & Wilcox, D.E. Active sites in copper proteins: An electronic-structure overview. Struct. Bonding 53, 1–57 (1983).

    CAS  Google Scholar 

  30. Eriksson, A.E., Jones, T.A. & Liljas, A. A refined structure of human carbonic anhydrase II at 2.0 Å resolution. Proteins 4, 274–282 (1988).

    CAS  PubMed  Google Scholar 

  31. Holmes, M.A. & Matthews, B.W. Structure of thermolysin refined at 1.6 Å Resolution. J. molec. Biol. 160, 623–629 (1982).

    CAS  PubMed  Google Scholar 

  32. Liljas, A., Håkansson, K., Jonsson, B.H. & Xue, Y. Inhibition and catalysis of carbonic anhydrase - recent crystallographic analyses. E. J. Biochem. 219, 110 (1994).

    Google Scholar 

  33. Håkansson, K., Wehnert, A. & Liljas, A. X-ray analysis of metal-substituted human carbonic anhydrase II derivatives. Acta crystallogr. D 50, 93–100 (1994).

    PubMed  Google Scholar 

  34. Tainer, J.A., Getzoff, E.D., Richardson, J.S. & Richardson, D.C. Structure and mechanism of copper-zinc superoxide dismutase. Nature 306, 284–287(1983).

    CAS  PubMed  Google Scholar 

  35. Adman, E.T. & Turley, S.T. Two crystal forms of A. cycloclastes nitrite reductase. in Bioinorganic Chemistry of Copper(eds Karlin, K.D. and Tyeklar, Z.) (Chapman & Hall, New York-London; 1993)

    Google Scholar 

  36. Hasnain, S.S. & Strange, R.W. Recent advances in XAFS data analysis in Biophysics and Synchrotron Radiation (eds Hasnain, S. S.) 104–122 (Ellis Horwood Ltd, Chichester, U.K.; 1990)

    Google Scholar 

  37. Binsted, N., Strange, R.W. & Hasnain, S.S. Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Biochemistry 31, 12117–12125(1992).

    CAS  PubMed  Google Scholar 

  38. Perutz, M.F., Hasnain, S.S., Duke, P.J., Sessler, J.L. & Hahn, J.E. Stereochemistry of iron in deoxyhaemoglobin. Nature 295, 535 (1982).

    Google Scholar 

  39. Strange, R.W., Blackburn, N.J., Knowles, P.F. & Hasnain, S.S. X-ray absorption spectroscopy of metal-histidine coordination in metalloproteins. Exact simulation of the EXAFS of tetrakis(imidazole)copper(II) nitrate and other copper-imidazole complexes by the use of a multiple dcattering treatment. J. Am. chem. Soc. 109, 7157–7162(1987).

    CAS  Google Scholar 

  40. Bernstein, F.E. et al. The protein data bank: a computer based archival file for macromolecular structures. J. molec. Biol. 112, 535–542. (1977).

    CAS  PubMed  Google Scholar 

  41. Iwasaki, H. & Matsubara, T. A nitrite reductase from Achromabactor cycloclastes. Biochem. J. 71, 645–652 (1972).

    CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strange, R., Dodd, F., Abraham, Z. et al. The substrate-binding site in Cu nitrite reductase and its similarity to Zn carbonic anhydrase. Nat Struct Mol Biol 2, 287–292 (1995). https://doi.org/10.1038/nsb0495-287

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0495-287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing