Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Flexibility and function in HIV-1 protease

Abstract

HIV protease is a homodimeric protein whose activity is essential to viral function. We have investigated the molecular dynamics of the HIV protease, thought to be important for proteinase function, bound to high affinity inhibitors using NMR techniques. Analysis of 15N spin relaxation parameters, of all but 13 backbone amide sites, reveals the presence of significant internal motions of the protein backbone. In particular, the flaps that cover the proteins active site of the protein have terminal loops that undergo large amplitude motions on the ps to ns time scale, while the tips of the flaps undergo a conformational exchange on the μs time scale. This enforces the idea that the flaps of the proteinase are flexible structures that facilitate function by permitting substrate access to and product release from the active site of the enzyme.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kohl, N.E. et al. Active human immunodeficiency virus protease is required for viral infectivity. Proc. natn. Acad. Sci. U.S.A. 85, 4686–4690 (1988).

    CAS  Google Scholar 

  2. Seelmeier, S., Schmidt, H., Turk, V. & von der Helm, K. Human immunodeficiency virus has an aspartic-type protease that can be inhibited by pepstatin-A. Proc. natn. Acad. Sci. U.S.A. 85, 6612–6616 (1988).

    CAS  Google Scholar 

  3. Wlodawer, A. & Erickson, J.W. Structure-based inhibitors of HIV-1 protease. A. Rev. Biochem. 62, 543–585 (1993).

    CAS  Google Scholar 

  4. Lam, P.Y.-S., et al. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 263, 380–384 (1994).

    CAS  PubMed  Google Scholar 

  5. Grzesiek, S. et al. NMR evidence for the displacement of a conserved interior water molecule in HIV protease by a non-peptide cyclic urea-based inhibitor. J. A. chem. Soc. 116, 1581–1582 (1994).

    CAS  Google Scholar 

  6. Jadhav, P.K. & Woemer, F.J. Synthesis of C2-symmetrical HIV-1 protease inhibitors from D-mannitol. Bioorg. med. Chem. Letts. 2, 353 (1992).

    CAS  Google Scholar 

  7. Harte, W.E. Jr, et al. Domain communication in the dynamics structure of human immunodeficiency virus-1 protease. Proc. natn. Acad. Sci. U.S.A. 87, 8864–8868 (1990).

    CAS  Google Scholar 

  8. Venable, R.M., Brooks, B.R. & Carson, F.W. Theoretical studies of relaxation of a monomeric subunit of HIV-1 protease in water using molecular-dynamics. Proteins Struct. Funct. Genet. 15, 374–384 (1993).

    CAS  PubMed  Google Scholar 

  9. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, Oxford, U.K.; 1961).

    Google Scholar 

  10. Kay, L.E., Torchia, D.A. & Bax, A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989).

    CAS  PubMed  Google Scholar 

  11. Boyd, J., Hommel, U. & Campbell, I.D. Influence of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanism upon longitudinal relaxation rates of 15N in macromolecules. J. chem. Phys. 175, 477–482 (1990).

    CAS  Google Scholar 

  12. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. & Torchia, D.A. Pulse sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear T1 and T2 values in proteins. J. magn. Reson. 97, 359–375 (1992).

    CAS  Google Scholar 

  13. Palmer, A.G., Skelton, N.J., Chazin, W.J., Wright, P.E. & Rance, M. Suppression of the effects of cross-correlation between dipolar and anisotropic chemical shift relaxation mechanisms in the measurement of spin-spin relaxation rates. Molec. Phys. 75, 699–711 (1992).

    CAS  Google Scholar 

  14. Torchia, D.A., Nicholson, L.K., Cole, H.B.R. & Kay, L.E. Heteronuclear NMR studies of the molecular dynamics of staphylococcal nuclease, in NMR of Proteins (eds Clore, G. M. & Gronenborn, A.M.) 190–219 (Macmillan, London; 1993).

    Google Scholar 

  15. Wagner, G., Hyberts, S. & Peng, J.W. Study of Protein Dynamics by NMR, in NMR of Proteins (eds Clore, G. M. & Gronenborn, A.M.) 220–257 (Macmillan, London; 1993).

    Google Scholar 

  16. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. chem. Soc. 104, 4546–4559 (1982).

    CAS  Google Scholar 

  17. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. chem. Soc. 104, 4559–4570 (1982).

    CAS  Google Scholar 

  18. Dellwo, M.J. & Wand, A.J. Model-independent and model-dependent analysis of the global and internal dynamics of cyclosporin A. J. Am. chem. Soc. 111, 4571–4578 (1989).

    CAS  Google Scholar 

  19. Clore, G.M. et al. Deviation from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. chem. Soc. 112, 4989–4991 (1990).

    CAS  Google Scholar 

  20. Barbato, G., Ikura, M., Kay, L.E., Pastor, R. & Bax, A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 31, 5269–5278 (1992).

    CAS  PubMed  Google Scholar 

  21. Kordel, J., Skelton, N.J., Akke, M., Palmer, A.G. & Chazin, W.J. Backbone dynamics of calcium-loaded calbindin D9k studies by two-dimensional proton detected 15N NMR spectroscopy. Biochemistry 31, 4856–4559 (1992).

    CAS  PubMed  Google Scholar 

  22. Nicholson, L.K. et al. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of Staphylococcal Nuclease. Biochemistry 31, 5253–5263 (1992).

    CAS  PubMed  Google Scholar 

  23. Constantine, K.L. et al. Relaxation study of the backbone dynamics of human profilin by two-dimensional 1H-15N NMR. FEBS Letts 336, 457–461 (1993).

    CAS  Google Scholar 

  24. Farrow, N.A. et al. Backbone dynamics of a free and a phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33, 5984–6003 (1994).

    CAS  PubMed  Google Scholar 

  25. Farrar, T.C. & Becker, E.D. Pulse and Fourier Transform NMR 1–115 (Academic Press, New York, 1997).

    Google Scholar 

  26. Szyperski, T., Luginbuhl, P., Otting, G., Guntert, P. & Wuethrich, K. . protein dynamics studied by rotating frame 15N spin relaxation times. J. Biomol. NMR 3, 151–164 (1993).

    CAS  PubMed  Google Scholar 

  27. Yamazaki, T. et al. Secondary structure and signal assignments of human-immunodeficiency-virus-1 protease complexed to a novel, structure-based inhibitor. Eur. J. Biochem. 219, 707–712 (1994).

    CAS  PubMed  Google Scholar 

  28. Clore, G.M., Driscoll, PC., Wingfield, P.T .& Gronenborn, A. Analysis of the backbone dynamics of interleukin-1β using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. Biochemistry 29, 7387–7401 (1990).

    CAS  PubMed  Google Scholar 

  29. Stone, M.J. et al. The backbone dynamics of the Bacillus subtilis glucose permease IIA domain determined from 15N NMR relaxation measurements. Biochemistry 31, 4393–4406 (1992).

    Google Scholar 

  30. Loeb, D.D. et al. Complete mutagenesis of the HIV-1 Protease. Nature 340, 397–400 (1989).

    CAS  PubMed  Google Scholar 

  31. Yamazaki, T. et al. NMR and X-ray evidence that the HIV protease catalytic aspartyl groups are protonated in the complex formed by the protease and a non-peptide cyclic urea-based inhibitor. J. Am. chem. Soc. 116, 1994 (1994).

    Google Scholar 

  32. Bai, Y, Milne, J.S., Mayne, L. & Englander, S.W. Primary structure effects on peptide group hydrogen exchange. Prot., Struct. Funct. Genet. 17, 75–86 (1993).

    CAS  Google Scholar 

  33. Rose, J.R., Salto, R. & Craik, C.S. Regulation of autoproteolysis of the HIV-1 and HIV-2 proteases with engineered amino acid substitutions. J. biol. Chem. 268, 11939–11945 (1993).

    CAS  PubMed  Google Scholar 

  34. Cheng, Y.-S.E. et al. High-level synthsis of recombinant HIV-1 protease and the recovery of active enzyme from inclusion bodies. Gene 87, 243–248 (1990).

    CAS  PubMed  Google Scholar 

  35. Grzesiek, S. & Bax, A. The importance of not saturating H2O in protein NMR. application to sensitivity enhancement and NOE measurements. J. Am. chem. Soc. 115, 12593–12594 (1993).

    CAS  Google Scholar 

  36. Peng, J.W., Thanabal, V. & Wagner, G. 2D heteronuclear NMR measurements of spin-lattice relaxation times in the rotating frame of X nuclei in heteronuclear HX spin systems. J. magn. Reson. 95, 421–427 (1991).

    CAS  Google Scholar 

  37. Palmer, A.G., Wright, P.E. & Ranee, M. Measurement of relaxation time constants for methyl groups by proton-detected heteronuclear NMR spectroscopy. Chem. Phys. Letts. 185, 41–46 (1991).

    CAS  Google Scholar 

  38. Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. Numerical Recipes in C (Cambridge University Press, Cambridge, U.K., 1988).

    Google Scholar 

  39. Venable, R.M. & Pastor, R.W. Frictional models for stochastic simulations of proteins. Biopolymers 27, 1001–1014 (1988).

    CAS  PubMed  Google Scholar 

  40. Woessner, D.E. Nuclear spin relaxation in ellipsoids undergoing rotational brownian motion. J. chem. Phys. 37, 647–654 (1962).

    CAS  Google Scholar 

  41. Palmer, A.G., Ranee, M. & Wright, P.E. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. chem. Soc. 113, 4371–4380 (1991).

    CAS  Google Scholar 

  42. Kraulis, P. Molscript - a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, L., Yamazaki, T., Torchia, D. et al. Flexibility and function in HIV-1 protease. Nat Struct Mol Biol 2, 274–280 (1995). https://doi.org/10.1038/nsb0495-274

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0495-274

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing