Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop

Abstract

The three–dimensional structure of an uncleaved serpin, a variant of human antichymotrypsin engineered to be an inhibitor of human neutrophil elastase, has been determined by X–ray crystallographic methods and is currently being refined at 2.5 Å resolution. It contains an intact reactive loop in a distorted helical conformation. A comparison of the current model with that of its cleaved counterpart suggests that the conformational ‘stress’ of the serpin in its uncleaved and uncomplexed state may not be confined solely to the reactive loop or β–sheet A. It is intriguing that strand s4A is not pre–inserted into β–sheet A of the native serpin, and this has profound implications for the mechanism of serpin function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Travis, J. & Salvesen, G.S. Human plasma proteinase inhibitors. Ann. Rev. Blochem. 52, 655–709 (1983).

    Article  CAS  Google Scholar 

  2. Huber, R. & Carrell, R.W. Implications of the three-dimensional structure of α1-antitrypsin for structure and function of serpins. Biochemistry 28, 8951–8966 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Bock, S.C. Structures and models of native serpins. Prot. Engng. 4. 107–108 (1990).

    Article  CAS  Google Scholar 

  4. Bode, W. & Huber, R. Ligand binding: proteinase-protein inhibitor interactions. Curr. Opin. struct. Biol. 1, 45–52 (1991).

    Article  CAS  Google Scholar 

  5. Banzon, J.A. & Kelly, J.W. β-Sheet rearrangements: serpins and beyond. Prot. Engng. 5, 113–115 (1992).

    Article  CAS  Google Scholar 

  6. Crowther, D.C., Evans, D.L.I. & Carrell, R.W. Serpins: implications of a mobile reactive centre. Curr. Opin. Biotech 3, 399–407 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Rubin, H. The biology and biochemistry of antichymotrypsin and its potential role as a therapeutic agent. Biol. Chem. Hoppe-Seyler 373, 497–502(1992).

    Article  CAS  PubMed  Google Scholar 

  8. Matheson, N.R., van Halbeek, H. & Travis, J. Evidence for a tetrahedral intermediate complex during serpin-proteinase interactions. J. biol. Chem. 266, 13489–13491 (1991).

    CAS  PubMed  Google Scholar 

  9. Loebermann, H., Tokuoka, R., Deisenhofer, J. & Huber, R. Human α1-proteinase inhibitor: crystal structure analysis of two crystal modifications, molecular model, and preliminary analysis of the implications for function. J. molec. Biol. 177, 531–556(1984).

    Article  CAS  PubMed  Google Scholar 

  10. Baumann, U. et al. Crystal structure of cleaved human α1-antichymotrypsin at 2.7 Å resolution and its comparison with other serpins. J. molec. Biol. 218, 595–606 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Mourey, L. et al. Crystal structure of cleaved bovine antithrombin III at 3.2 Å resolution. J. molec. Biol. 232, 223–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Baumann, U., Bode, W., Huber, R., Travis, J. & Potempa, J. Crystal structure of cleaved equine leucocyte elastase inhibitor determined at 1.95 Å resolution. J. molec. Biol. 226, 1207–1218 (1992).

    Article  CAS  PubMed  Google Scholar 

  13. Schecter, I. & Berger, A. On the size of the active site in proteases. I. Papain. Biochem. Biophys. Res. Commun. 27, 157–162 (1967).

    Article  Google Scholar 

  14. Pemberton, P.A., Stein, P.E., Pepys, M.B., Potter, J.M. & Carrell, R.W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336, 257–258 (1988).

    Article  CAS  PubMed  Google Scholar 

  15. Wright, H.T., Qian, H.X. & Huber, R. Crystal structure of plakalbumin, a proteolytically nicked form of ovalbumin. Its relationship to the structure of cleaved α1-proteinase inhibitor. J. molec. Biol. 213, 513–528 (1990).

    Article  CAS  PubMed  Google Scholar 

  16. Stein, P.E. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 347, 99–102 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Stein, P.E., Leslie, A.G.W., Finch, J.T. & Carrell, R.W. Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. J. molec. Biol. 221, 941–959 (1991).

    Article  CAS  PubMed  Google Scholar 

  18. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 355, 270–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Schreuder, H.A. et al. The intact and cleaved human antithrombin III complex as a model for serpin-proteinase interactions. Nature struct. Biol. 1, 48–54 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Carrell, R.W., Stein, P.E., Fermi, G. & Wardell, M.R. Biological implications of a 3 Å structure of dimeric antithrombin. Structure (in the press).

  21. Laskowski, Jr., M. & Kato, I. Protein inhibitors of proteinases. A. Rev. Biochem. 49, 593–626 (1980).

    Article  CAS  Google Scholar 

  22. Hubbard, S.J., Campbell, S.F. & Thornton, J.M. Molecular recognition. Conformational analysis of limited proteolytic sites and serine proteinase protein inhibitors. J. molec. Biol. 220, 507–530 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Skriver, K. et al. Substrate properties of C1 inhibitor Ma (alanine 434→glutamic Acid). Genetic and structural evidence suggesting that the P12-region contains critical determinants of serine protease inhibitor/ substrate status. J. biol. Chem. 266, 9216–9221 (1991).

    CAS  PubMed  Google Scholar 

  24. Cooperman, B.S. et al. Antichymotrypsin interaction with chymotrypsin: partitioning of the complex. J. biol. Chem. 268, 23616–23625 (1993).

    CAS  PubMed  Google Scholar 

  25. Barlow, D.J. & Thornton, J.M. Helix geometry in proteins. J. molec. Biol. 201, 601–619 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Björk, I., Nordling, K. & Olson, S.T. Immunologic evidence for insertion of the reactive-bond loop of antithrombin into the A β-sheet of the inhibitor during trapping of target proteinases. Biochemistry. 32, 6501–6505 (1993).

    Article  PubMed  Google Scholar 

  27. Schulze, A.J., Huber, R., Degryse, E., Speck, D. & Bischoff, R. Inhibitory activity and conformational transition of α1-proteinase inhibitor variants. Eur. J. Biochem. 202, 1147–1155 (1991).

    Article  CAS  PubMed  Google Scholar 

  28. Schulze, A.J., Frohnert, P.W., Engh, R.A. & Huber, R. Evidence for the extent of insertion of the active site loop of intact α1-proteinase inhibitor in β-sheet A. Biochemistry. 31, 7560–7565 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Gettins, P. & Harten, B. Properties of thrombin- and elastase-modified human antithrombin III. Biochemistry 27, 3634–3639 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Bruch, M., Weiss, V. & Engel, J. Plasma serine proteinase inhibitors (serpins) exhibit major conformational changes and a large increase in conformational stability upon cleavage at their reactive sites. J. biol. Chem. 263, 16626–16630 (1988).

    CAS  PubMed  Google Scholar 

  31. Carrell, R.W. & Owen, M.C. Plakalbumin, of α1-antitrypsin, antithrombin, and the mechanism of inflammatory thrombosis. Nature 317, 730–732(1985).

    Article  CAS  PubMed  Google Scholar 

  32. Perkins, S.J. et al. Secondary structure changes stabilize the reactive-centre cleaved form of SERPINs. A study by 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. J. molec. Biol. 228, 1235–1254 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Fujinaga, M. et al. Crystal and molecular structures of the complex of α-chymotryspin with its inhibitor turkey ovomucoid third domain at 1.8 Å resolution. J. molec. Biol. 195, 397–418 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Rühlmann, A., Kukla, D., Schwager, P., Bartels, K. & Huber, R. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. J. molec. Biol. 77, 417–436 (1973).

    Article  PubMed  Google Scholar 

  35. Bode, W., Papamokos, E., Musil, D., Seemueller, U. & Fritz, H. Refined 1.2 Å crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin c. Molecular structure of eglin and its detailed interaction with subtilisin. EMBO J. 5, 813–818 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McPhalen, C.A., Svendsen, I., Jonassen, I. & James, M.N.G. Crystal and molecular structure of chymotrypsin inhibitor 2 from barley seeds in complex with subtilisin Novo. Proc. natn. Acad. Sci. U.S.A. 82, 7242–7246 (1985).

    Article  CAS  Google Scholar 

  37. Greenblatt, H.M., Ryan, C.A. & James, M.N.G. Structure of the complex of Streptomyces griseus proteinase B and polypeptide chymotrypsin inhibitor-1 from Russet Burbank potato tubers at 2.1 Å resolution. J. molec. Biol. 205, 201–228. (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Fish, W.W. & Björk, I. Release of a two-chain form of antithrombin III from the antithrombin-thrombin complex. Eur. J. Biochem. 101, 31–38 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Rubin, H. et al. Cloning, expression, purification, and biological activity of recombinant native and variant α1-antichymotrypsin. J. biol. Chem. 265, 1199–1207 (1990).

    CAS  PubMed  Google Scholar 

  40. Patston, P.A., Gettins, P., Beechem, J. & Schapira, M. Mechanism of serpin action: evidence that C1-inhibitor functions as a suicide substrate. Biochemistry 30, 8876–8882 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Schechter, N.M. et al. Reaction of human chymase with reactive-site variants of α1-antichymotrypsin — modulation of inhibitor versus substrate properties. J. biol. Chem. 268, 23626–23633 (1993).

    CAS  PubMed  Google Scholar 

  42. Gettins, P. Absence of large-scale conformational change upon limited proteolysis of ovalbumin, the prototypic serpin. J. biol. Chem. 264, 3781–3785 (1989).

    CAS  PubMed  Google Scholar 

  43. Stein, P.E., Tewkesbury, D.A. & Carrell, R.W. Ovalbumin and angiotensinogen lack serpin S→R conformational change. Biochem. J. 262, 103–107 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Katz, D.S. et al. Crystallization and atomic resolution x-ray diffraction analysis of antichymotrypsin variants. Biochem. biophys. Res. Commun. 196, 752–757 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Rosenfeld, M.A. et al. Adenovirus-mediated transfer of a recombinant α1-antitrypsin gene to the lung epithelium in vivo. Science 252, 431–434 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Wei, A., Rubin, H., Cooperman, B.S., Schechter, N. & Christianson, D.W. Crystallization, activity assay, and preliminary x-ray diffraction analysis of the uncleaved form of the serpin antichymotrypsin. J. molec. Biol. 226, 273–276 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  PubMed  Google Scholar 

  48. Katz, D.S. & Christianson, D.W. Modeling the uncleaved serpin antichymotrypsin and its chymotrypsin complex. Prot. Engng. 6, 701–709 (1993).

    Article  CAS  Google Scholar 

  49. Rossmann, M.G. & Blow, D.M. The detection of sub-units within the Crystallographic asymmetric unit. Acta. crystallogr. 15, 24–31 (1962).

    Article  CAS  Google Scholar 

  50. Huber, R. Die automatisierte faltmolekülmethode. Acta. crystallogr. 19, 353–356 (1965).

    Article  CAS  Google Scholar 

  51. Brünger, A.T. Extension of molecular replacement: a new search strategy based on Patterson correlation refinement. Acta. crystallogr. A46, 46–57 (1990).

    Article  Google Scholar 

  52. Jones, T.A. Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. Methods Enzym. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  53. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  54. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

    Article  PubMed  Google Scholar 

  55. Bernstein, F.C. et al. The protein data bank: a computer-based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, A., Rubin, H., Cooperman, B. et al. Crystal structure of an uncleaved serpin reveals the conformation of an inhibitory reactive loop. Nat Struct Mol Biol 1, 251–258 (1994). https://doi.org/10.1038/nsb0494-251

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0494-251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing