Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and mechanistic basis of immunity toward endonuclease colicins

Abstract

The crystal structure of the cytotoxic endonuclease domain from the bacterial toxin colicin E9 in complex with its cognate immunity protein Im9 reveals that the inhibitor does not bind at the active site, the core of which comprises the HNH motif found in intron-encoded homing endonucleases, but rather at an adjacent position leaving the active site exposed yet unable to bind DNA because of steric and electrostatic clashes with incoming substrate. Although its mode of action is unorthodox, Im9 is a remarkably effective inhibitor since it folds within milliseconds and then associates with its target endonuclease at the rate of diffusion to form an inactive complex with sub-femtomolar binding affinity. This hyperefficient mechanism of inhibition could be well suited to other toxic enzyme systems, particularly where the substrate is a polymer extending beyond the boundaries of the active site.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The unfolding and refolding of Im9.
Figure 2: Im9 inhibits DNA and polyanion binding to the E9 DNase.
Figure 3: Structure of the E9 DNase–Im9 complex at 2.05 Å.
Figure 4: a, Topology diagram of the E9 DNase secondary-structure elements (with helices shown as red circles and ß-strands as green triangles) indicating the relative positions of the active site (shown in blue) and Im9 binding site (shown in yellow).
Figure 5: Stereo view of protein-protein interaction specificity residues that colocalize at the E9 DNase-Im9 interface.
Figure 6: Sequence and structure of the HNH homing endonuclease motif.
Figure 7: Im9 hinders access of double-stranded DNA into the E9 DNase active site.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. James, R., Lazdunski, C. & Pattus, F (eds.) Bacteriocins, microcins and lantibiotics, NATO ASI Series H (Springer, Heidelberg; 1992).

    Book  Google Scholar 

  2. James, R., Kleanthous, C. & Moore, G.R. The biology of E colicins: paradigms and paradoxes. Microbiology 142, 1569– 1580 (1996).

    Article  CAS  Google Scholar 

  3. Di Masi, D.R., White, D.C., Schnaitman, C.A. & Bradbeer, C. Transport of vitamin B12 in Escherichia coli; common receptor sites for vitamin B12 and the E colicins on the outer membrane of the cell envelope. J. Bacteriol. 115, 506–513 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lazdunski, C., Bouveret, E., Rigal, A., Journet, L., Lloubès, R. & Bénédetti, H. Colicin import into Escherichia coli cells. J. Bacteriol. 180, 4993–5002 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cramer, W.A. & Stauffacher, C.V. Structure–function of the channel-forming colicins. Annu. Rev. Biophys. Biomol. Struct . 24, 611–641 ( 1995).

    Article  CAS  Google Scholar 

  6. Senior, B.W. & Holland, I.B. Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA 68, 959–963 ( 1971).

    Article  CAS  Google Scholar 

  7. Schaller, K. & Nomura, M. Colicin E2 is a DNA endonuclease. Proc. Natl. Acad. Sci. USA 73, 3989– 3993 (1976).

    Article  CAS  Google Scholar 

  8. Wiener, M.C., Freyman, D.M., Glosh, P. & Stroud, R.M. The crystal structure of colicin Ia. Nature 385, 461– 464 (1997).

    Article  CAS  Google Scholar 

  9. Bénédetti, H., Lloubès, R., Lazdunski, C. & Letellier, L. Colicin A unfolds during its translocation into Escherichia coli cells and spans the whole cell envelope when its pore has formed. EMBO J. 11, 441–447 ( 1992).

    Article  Google Scholar 

  10. Jakes, K. & Zinder, N. D. Highly purified colicin E3 contains immunity protein. Proc. Natl. Acad. Sci. USA 71, 3380–3384 (1974).

    Article  CAS  Google Scholar 

  11. Wallis, R., Reilly, A., Rowe, A., Moore, G., James, R. & Kleanthous, C. In vivo and in vitro characterisation of overproduced colicin E9 immunity protein. Eur. J. Biochem. 207, 687– 695 (1992).

    Article  CAS  Google Scholar 

  12. Kleanthous, C., Hemmings, A.M., Moore, G.R. & James, R. Immunity proteins and their specificity for endonuclease colicins: Telling right from wrong in protein–protein recognition. Mol. Microbiol . 28, 227–233 ( 1998).

    Article  CAS  Google Scholar 

  13. Wallis, R., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interactions in colicin E9 DNase–immunity protein complexes. Diffusion controlled association and femtomolar binding for the cognate complex. Biochemistry 34, 13743–13750 (1995).

    Article  CAS  Google Scholar 

  14. Jackson, S.E. & Fersht, A.R. Folding of chymotrypsin inhibitor-2. Evidence for a 2-state transition. Biochemistry 30, 10428–10435 (1991).

    Article  CAS  Google Scholar 

  15. Jackson, S.E. How do small single-domain proteins fold? Folding & Design 3, R81–R91 ( 1998).

    Article  CAS  Google Scholar 

  16. Wallis, R., Reilly, A., Barnes, K., Abell, C., Campbell, D.G., Moore, G.R., James, R. & Kleanthous, C. Tandem overproduction and characterisation of the nuclease domain of colicin E9 and its cognate inhibitor protein Im9. Eur. J. Biochem. 220, 447–454 (1994).

    Article  CAS  Google Scholar 

  17. Garinot-Schneider, C., Pommer, A.J., Moore, G.R., Kleanthous, C. & James, R. Identification of putative active site residues in the DNase domain of colicin E9 by random mutagenesis. J. Mol. Biol. 260, 731–742 (1996).

    Article  CAS  Google Scholar 

  18. Kühlmann, U.C., Kleanthous, C., James, R., Moore, G.R. & Hemmings, A.M. Preliminary crystallographic analysis of the complex between the DNase domain of colicin E9 and its cognate immunity protein. Acta Crystallogr. D 55, 256–259 (1999).

    Article  Google Scholar 

  19. Osborne, M. J., Breeze, A. L., Lian, L-Y., Reilly, A., James, R., Kleanthous, C. & Moore, G. R. Three-dimensional solution structure and 13C NMR asignments of the colicin E9 immunity protein Im9. Biochemistry 35, 9505–9512 (1996).

    Article  CAS  Google Scholar 

  20. Chak, K-F., Safo, M.K., Ku, W-Y, Hsieh, S-Y & Yuan, H. The crystal-structure of the immunity protein of colicin E7 suggests a possible colicin-interacting surface. Proc. Natl. Acad. Sci. U.S.A. 93, 6437–6442 (1996).

    Article  CAS  Google Scholar 

  21. Dennis, C.A., Videler, H., Pauptit, R.A., Wallis, R., James, R., Moore, G.R. & Kleanthous, C. A structural comparison of the colicin immunity proteins Im7 and Im9 gives new insights into the molecular determinants of immunity protein specificity. Biochem. J. 333, 183–191 (1998).

    Article  CAS  Google Scholar 

  22. Wallis, R., Leung, K-Y., Osborne, M. J., James, R., Moore, G.R. & Kleanthous, C. Specificity in protein–protein recognition: Conserved Im9 residues are the major determinants of stability in the colicin E9 DNase–Im9 complex. Biochemistry 37, 476– 485 (1998).

    Article  CAS  Google Scholar 

  23. Li, W., Hamill, S.J., Hemmings, A.M., Moore, G.R., James, R. & Kleanthous, C. Dual recognition and the role of specificity-determining residues in colicin E9 DNase–immunity protein interactions. Biochemistry 37, 11771–11779 (1998).

    Article  CAS  Google Scholar 

  24. Holm, L. & Sander, C. Protein-structure comparison by alignment of distance matrices J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  25. Janin, J. Elusive affinities. Proteins 21, 30– 39 (1995).

    Article  CAS  Google Scholar 

  26. Osborne, M.J., Wallis, R., Leung, K-Y., William, G., Lian, L-Y., James, R., Kleanthous, C. & Moore, G.R. Identification of critical residues in the colicin E9 DNase binding region of the Im9 protein. Biochem. J. 323, 823 –831 (1997).

    Article  CAS  Google Scholar 

  27. Li, W., Dennis, C.A., Moore, G.R., James, R. & Kleanthous, C. Protein–protein interaction specificity of Im9 for the endonuclease toxin colicin E9 defined by homologue scanning mutagenesis, J. Biol. Chem. 272, 22253–22258 (1997).

    Article  CAS  Google Scholar 

  28. Curtis, M.D. & James, R. Investigation of the specificity of the interaction between colicin E9 and its immunity protein by site-directed mutagenesis. Mol. Microbiol. 11, 2727– 2733 (1991).

    Article  Google Scholar 

  29. Janin, J. & Chothia, C. The structure of protein–protein recognition sites. J. Biol. Chem. 265, 16027 –16030 (1990).

    CAS  PubMed  Google Scholar 

  30. Pommer, A.J., Wallis, R., Moore, R., James, R. & Kleanthous, C. Enzymological characterisation of the nuclease domain from the bacterial toxin colicin E9. Biochem. J. 334 , 387–392 (1998).

    Article  CAS  Google Scholar 

  31. Orpen, A.G., Brammer, L., Allen, F.H., Kennard, O., Watson, D.G. & Taylor, R. Tables of bond lengths determined by X-ray and neutron diffraction. 2. Organometallic compounds and co-ordination complexes of the D-block and F-block metals. J. Chem. Soc. Dalton Trans. S1–S83 (1989).

  32. Shub, D.A., Goodrich-Blair, H. & Eddy, S.R. Amino acid sequence motif of group I intron endonucleases is conserved in open reading frames of group II introns. Trends. Biochem. Sci. 19, 402–404 (1994).

    Article  CAS  Google Scholar 

  33. Mueller, J.E., Bryk, M., Loizos, N. & Belfort, M. in Nucleases 2nd edn (eds. Linn, S.M., Lloyd, R.S. & Roberts, R.J.) 111– 143 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; (1993).

    Google Scholar 

  34. Belfort, M. & Roberts, R.J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25, 3379–3388 (1997).

    Article  CAS  Google Scholar 

  35. Duan, X.Q., Gimble, F.S. & Quiocho, F.A. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell 89, 555–564 (1997).

    Article  CAS  Google Scholar 

  36. Flick, K.E., Jurica, M.S., Monnat Jr, R.J. & Stoddard, B.L. DNA binding and cleavage by the nuclear intron-encoded homing endonuclease I-PpoI. Nature 394, 96–101 (1998).

    Article  CAS  Google Scholar 

  37. Derbyshire, V., Kowalski, J.C., Dansereau, J.T., Hauer, C.R. & Belfort, M. Two-domain structure of the td intron-encoded endonuclease I-TevI correlates with the two-domain configuration of the homing site. J. Mol. Biol. 265 , 494–506 (1997).

    Article  CAS  Google Scholar 

  38. Bode, W. & Huber, R. Natural protein proteinase inhibitors and their interactions with proteinases. Eur. J. Biochem. 204, 433–451 (1992).

    Article  CAS  Google Scholar 

  39. Guillet, V., Lapthorn, A., Hartley, R.W. & Mauguen, Y. Recognition between a bacterial ribonuclease, barnase, and its natural inhibitor, barstar. Structure 1, 165– 176 (1993).

    Article  CAS  Google Scholar 

  40. Kobe, B. & Deisenhofer, J. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374, 183–186 (1995).

    Article  CAS  Google Scholar 

  41. Knighton, D.R., Zheng, J.H., Teneyck, L.F., Ashford, V.A., Xuong, N.H., Taylor, S.S. & Sowadski, J.M. Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine-monophosphate dependent protein-kinase. Science 253 414–420 (1991).

    Article  CAS  Google Scholar 

  42. Mol, C.D., Arvai, A.S., Sanderson, R.J., Slupphaug, G., Kavli, B., Krokan, H.E., Mosbaugh, D.W. & Tainer, J.A. Crystal-structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell 82, 701–708 ( 1995).

    Article  CAS  Google Scholar 

  43. Kabsch, W., Mannherz, H.G., Suck, D., Pai, E.F. & Holmes, K.C. Atomic structure of the actin–DNase I complex. Nature 347, 37–44 ( 1990).

    Article  CAS  Google Scholar 

  44. Whittaker, S. B-M., Boetzel, R., MacDonald, C., Lian, L-Y., Pommer, A.J., Reilly, A., James, R., Kleanthous, C. & Moore, G.R. NMR detection of slow conformational dynamics in an endonuclease toxin. J. Biol. NMR 12, 145–159 (1998).

    Article  CAS  Google Scholar 

  45. Russo, A.A., Tong, L., Lee, J-O., Jeffrey, P.D. & Pavletich, N.P. Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16 (INK4a). Nature 395, 237–243 (1998).

    Article  CAS  Google Scholar 

  46. Dalgaard, J.Z., Klar, A.J., Moser, M.J., Holley, W.R., Chatterjee, A. & Mian, I.S. Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family. Nucleic Acids Res. 25, 4626–4638 (1997).

    Article  CAS  Google Scholar 

  47. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. & Nagata, S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43– 50 (1998).

    Article  CAS  Google Scholar 

  48. Santoro, D.W. & Bolen, M.M. Unfolding free energy changes determined by the linear extrapolation method: unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063–8068 (1988).

    Article  CAS  Google Scholar 

  49. Johnson, C.M. & Fersht, A. R. Protein stability as a function of denaturant concentration -the thermal-stability of barnase in the presence of urea. Biochemistry 34, 6795– 6804 (1995).

    Article  CAS  Google Scholar 

  50. Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Meth. Enz. 276, 307–326 (1996).

    Article  Google Scholar 

  51. Sheldrick, G.M. Phase annealing in SHELX-90: direct methods for large structures. Acta Crystallogr. A 46, 467–473 (1990).

    Article  Google Scholar 

  52. De la Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Meth. Enz. 276, 472–494 (1997).

    Article  CAS  Google Scholar 

  53. Abrahams, J.P. & Leslie, A.G.W. Methods used in the structural determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30– 42 (1996).

    Article  CAS  Google Scholar 

  54. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  55. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallographic R factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  56. Brünger, A.T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472– 475 (1992).

    Article  Google Scholar 

  57. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240– 255 (1997).

    Article  CAS  Google Scholar 

  58. Navaza, J. AMoRe: an automated molecular replacement program package. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  59. Read, R.J. Improved Fourier coefficients for maps using phases from partial structures with errors. Acta Crystallogr. A 42, 140 –149 (1986).

    Article  Google Scholar 

  60. Laskowski, R.A., MacArthur, M.W., Moss, D. & Thornton, J.M. PROCHECK—A program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283– 292 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the UEA Colicin Research Group for valuable discussions, C. Garinot-Schneider (UEA) for early work on gel-shift experiments and A. Capaldi (Leeds) for help and advice regarding the folding experiments. We also thank the reviewers of this paper for their helpful comments. The work was generously supported by The Wellcome Trust and by the Biotechnology & Biological Sciences Research Council. N.F. was funded by the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Colin Kleanthous or Andrew M. Hemmings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleanthous, C., Kühlmann, U., Pommer, A. et al. Structural and mechanistic basis of immunity toward endonuclease colicins . Nat Struct Mol Biol 6, 243–252 (1999). https://doi.org/10.1038/6683

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/6683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing