Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR

Abstract

Deletion of phenylalanine 508 (ΔF508) in the cystic fibrosis transmembrane-conductance regulator (CFTR) prevents the otherwise functional protein from reaching the plasma membrane and is the leading cause of cystic fibrosis. Indirect evidence suggests that the mutant protein, ΔF508 CFTR, is misfolded. We address this issue directly, using comparative limited proteolysis of CFTR at steady state and during biosynthesis in the native microsomal environment. Distinct protease susceptibilities suggest that cytosolic domain conformations of wild type and ΔF508 CFTR differ, not only near F508, but globally. Moreover, ΔF508 CFTR proteolytic cleavage patterns were indistinguishable from those of the early folding intermediate of wild type CFTR. The results suggest that the ΔF508 mutation causes the accumulation of a form of the protein that resembles an intermediate in the biogenesis of the wild type CFTR, rather than induces the production of non-native variant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rommens, J.M. et al. Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245, 1059–1065 (1989).

    Article  CAS  Google Scholar 

  2. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  Google Scholar 

  3. Riordan, J.R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    Article  CAS  Google Scholar 

  4. Riordan, J.R. The cystic fibrosis transmemebrane conductance regulator. Annu. Rev. Physiol. 55, 609–630 (1993).

    Article  CAS  Google Scholar 

  5. Quinton, P.M. Cystic fibrosis: A disease in electrolyte transport. FASEB J. 4, 2709–2717 (1990).

    Article  CAS  Google Scholar 

  6. Boucher, R.C. Human airway ion transport. Am. J. Resp. Crit. Care. Med. 150, 271–281 (1994).

    Article  CAS  Google Scholar 

  7. Welsh, M.J. & E, S.A. Molecular mechanism of CFTR channel dysfunction in cystic fibrosis. Cell 73, 1251–1254 (1993).

    Article  CAS  Google Scholar 

  8. Zielenski, J. & Tsui, L.-C. Cystic fibrosis: genotypic and phenotypic variations. Annu. Rev. Genet. 29, 777–807 (1995).

    Article  CAS  Google Scholar 

  9. Cheng, S.H. et al. Defective intracellular transport and processing of CFTR is the moleuclar basis of most cystic fibrosis. Cell 63, 827–834 (1990).

    Article  CAS  Google Scholar 

  10. Lukacs, G.L. et al. Conformational maturation of CFTR but not its mutant counterpart (ΔF508) occurs in the endoplasmic reticulum and requires ATP. EMBOJ. 13, 6076–6086 (1994).

    Article  CAS  Google Scholar 

  11. Ward, C.L. & Kopito, R.R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 25710–25718 (1994).

    CAS  PubMed  Google Scholar 

  12. Denning, G.M. et al. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature sensitive. Nature 350, 761–764 (1992).

    Article  Google Scholar 

  13. Kartner, N., Augustinas, O., Jensen, T.J., Naismith, A.L. & Riordan, J.R. Mislocalization of ΔF508 CFTR in cystic fibrosis sweat gland. Nature Genet. 1, 321–327 (1992).

    Article  CAS  Google Scholar 

  14. Pind, S., Riordan, J.R. & Williams, D.B. Participation of the endoplasmic reticulum chaperone calnexin (p88, IP90) in the biogenesis of the cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 269, 12784–12788 (1994).

    CAS  PubMed  Google Scholar 

  15. Yang, Y., Janich, S., Cohn, J. & Wilson, J.M. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc. Natl. Acad. Sci. USA 90, 9480–9484 (1993).

    Article  CAS  Google Scholar 

  16. Teem, J.L. et al. Identification of revertants for the cystic fibrosis ΔF508 mutation using STE6-CFTR chimeras in yeast. Cell 73, 335–346 (1993).

    Article  CAS  Google Scholar 

  17. Thomas, P.J., Shenbagamurthi, P., Sondek, J., Hullihen, J.M. & Pedersen, P.L. The cystic fibrosis transmembrane conductance regulator. J. Biol. Chem. 267, 5727–5730 (1992).

    CAS  Google Scholar 

  18. Qu, B.-H. & Thomas, P.J. Alteration of the cystic fibrosis transmembrane conductance regulator folding pathway. J. Biol. Chem. 271, 7261–7264 (1996).

    Article  CAS  Google Scholar 

  19. Beynon, R.J. & Bond, J.S. Proteolytic enzymes (IRL Press, Oxford; 1989).

    Google Scholar 

  20. Kuznetsov, G., Chen, L.B. & Nigan, S.K. Several endoplasmic reticulum stress proteins, including ERp72, interact with thyroglobulin during its maturation. J. Biol. Chem. 269, 22990–22995 (1994).

    CAS  PubMed  Google Scholar 

  21. Huovila, A.P., Eder, A.M. & Fuller, S.D. Hepaptitis B Surface antigen assembles in a post-ER pre-Golgi compartment. J. Cell Biol. 118, 1305–1320 (1992).

    Article  CAS  Google Scholar 

  22. Dill, K.A. & Hue, S.C., From Levinthal to pathways to funnels. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  23. Baker, D. & Agard, D.A. Kinetics versus thermodynamics in protein folding. Biochemistry 33, 7505–7509 (1994).

    Article  CAS  Google Scholar 

  24. Qu, B.-H., Strickland, E.H. & Thomas, P.J. Localization and supression of the kinetic defect in CFTR folding. J. Biol. Chem. 272, 15739–15744 (1997).

    Article  CAS  Google Scholar 

  25. Lukacs, G.L. et al. The ΔF508 mutation decreases the stability of CFTR in the plasma membrane. J. Biol. Chem. 268, 21592–21598 (1993).

    CAS  PubMed  Google Scholar 

  26. Balch, W.E. & Rothman, J.E. Characterization of protein transport between successive compartments of the Golgi apparatus: asymetric properties of donor and acceptor activities in a cell free system. Arch. Biochem. Biophys. 240, 413–425 (1985).

    Article  CAS  Google Scholar 

  27. Lukacs, G.L., Segal, G., Kartner, N., Grinstein, S. & Zhang, F. Constitutive internalization of CFTR is mediate by clathrin-dependent endocytosis and is regulated by protein phosphorylation. Biochem. J. 328, 353–361 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely L. Lukacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Kartner, N. & Lukacs, G. Limited proteolysis as a probe for arrested conformational maturation of ΔF508 CFTR. Nat Struct Mol Biol 5, 180–183 (1998). https://doi.org/10.1038/nsb0398-180

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0398-180

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing