Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the Root effect in haemoglobin

Abstract

The remarkable ability of Root effect haemoglobins to pump oxygen against high O2 gradients results from extreme, acid-induced reductions in O2 affinity and cooperativity. The long-sought mechanism for the Root effect, revealed by the 2 Å crystal structure of the ligand-bound haemoglobin from Leiostomus xanthurus at pH 7.5, unexpectedly involves modulation of the R-state. Key residues strategically assemble positive-charge clusters across the allosteric β1β2-interface in the R-state. At low βH, protonation of the βN terminus and His 147(HC3)β within these clusters is postulated to destabilize the R-state and promote the acid-triggered, allosteric R→T switch with concomitant O2 release. Surprisingly, a set of residues specific to Root effect haemoglobins recruit additional residues, conserved among most haemoglobins, to produce the Root effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Root, R.W. The respiratory function of the blood of marine fishes. Biol. Bull. 61, 427–465 (1931).

    Article  CAS  Google Scholar 

  2. Brunori, M., Coletta, M., Giardina, B. & Wyman, J. A macromolecular transducer as illustrated by trout haemoglobin IV. Proc. Natl. Acad. Sci. USA 75, 4310–4312 (1978).

    Article  CAS  Google Scholar 

  3. Steen, J.B. in Fish Physiology 4th edn. (eds Hoar, W.S. & Randall, D.J.) 413–443 (Academic Press, New York, 1970).

    Google Scholar 

  4. Farmer, M., Fyhn, H.J., Fyhn, U.E.H. & Noble, R.W. Occurrence of Root effect haemoglobins in Amazonian fishes. Comp. Biochem. Physiol. 62A, 115–124 (1979).

    Article  CAS  Google Scholar 

  5. Wittenberg, J.B. & Wittenberg, B.A. The choroid retemirabileofthefish eye. I. oxygen secretion and structure: comparison with the swimbladder rete mirabile. Biol. Bull. 146, 116–136 (1974).

    Article  CAS  Google Scholar 

  6. Brittain, T. Minireview. Root effect. Comp. Biochem. Physiol. 86B, 473–481 (1987).

    CAS  Google Scholar 

  7. Riggs, A. Studies of the Amazonian fishes: an overview. Comp. Biochem. Physiol. 62A, 257–272 (1979).

    Article  CAS  Google Scholar 

  8. diPrisco, G. & Tamburrini, M. The hemoglobins of marine and freshwater fish: the search for correlations with physiological adaptation. Comp. Biochem. Physiol. 102B, 661–671 (1992).

    CAS  Google Scholar 

  9. Bohr, C., Hasselbalch, K. & Krogh, A. Ueber einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand. Arch. Physiol. 16, 402–412 (1904).

    Article  Google Scholar 

  10. Perutz, M.F. & Brunori, M. Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299, 421–426 (1982).

    Article  CAS  Google Scholar 

  11. Tan, A.L., De Young, A. & Noble, R.W. The pH dependence of the affinity, kinetics, and cooperativity of ligand binding to carp haemoglobin, Cyprinus carpio. J. Biol. Chem. 247, 2493–2498 (1972).

    CAS  PubMed  Google Scholar 

  12. Noble, R.W., Parkhurst, L.J. & Gibson, Q.H. The effect of pH on the reactions of oxygen and carbon monoxide with the haemoglobin of the carp, Cyprinus carpio. J. Biol. Chem. 245, 6628–6633 (1970).

    CAS  PubMed  Google Scholar 

  13. Scholander, P.F. & Van Dam, L. Secretion of gases against high pressure in the swim-bladder of deep sea fishes. I. Oxygen dissociation in blood. Biol. Bull. 107, 247–259 (1954).

    Article  Google Scholar 

  14. Bonaventura, C., Boiling, S., Bonaventura, J. & Brunori, M. Spot hemoglobin. Studies on the Root effect hemoglobin of a marine teleost. J. Biol. Chem. 251, 1871–1876 (1976).

    CAS  PubMed  Google Scholar 

  15. Horimoto, K., Suzuki, H. & Otsuka, J. Discrimination between adaptive and neutral amino acid substitutions in vertebrate haemoglobins. J. Molec. Evol. 31, 302–324 (1990).

    Article  CAS  Google Scholar 

  16. Parkhurst, L.J., Goss, D.J. & Perutz, M.F. Kinetic and equilibrium studies on the role of β-147 histidine in the Root effect and cooperativity in carp hemoglobin. Biochemistry 22, 5401–5409 (1983).

    Article  CAS  Google Scholar 

  17. Parkurst, L.J. & Goss, D.J. Ligand binding kinetic studies on the hybrid hemoglobin α(human):β(carp): a hemoglobin with mixed conformations and sequential conformational changes. Biochemistry 23, 2180–2186 (1984).

    Article  Google Scholar 

  18. Luigi, B.F. & Nagai, K. Crystallographic analysis of mutant human haemoglobin made in Escherichia coli. Nature 320, 555–556 (1986).

    Article  Google Scholar 

  19. Nagai, K., Perutz, M.F. & Poyart, C. Oxygen binding properties of human mutant hemoglobin synthesized in Escherichia coli. Proc. Natl. Acad. Sci. USA 82, 7252–7255 (1985).

    Article  CAS  Google Scholar 

  20. Luisi, B.F., Nagai, K. & Perutz, M.F. X-ray crystallographic and functional studies of human haemoglobin mutants produced in Escherichia coli. Acta. Haemat. 78, 85–89 (1987).

    Article  CAS  Google Scholar 

  21. Camardella, L. et al. Haemoglobin of the Antarctic fish Pagothenia bernacchii. Amino acid sequence, oxygen equilibria and crystal structure of its carbonmonoxy derivative. J. Molec. Biol. 224, 449–460 (1992).

    Article  CAS  Google Scholar 

  22. Ito, N., Komiyama, N.H. & Fermi, G. Structure of deoxyhaemoglobin of the Antarctic fish Pagothenia bernacchii with an analysis of the structural basis of the Root effect by comparison of the liganded and unliganded haemoglobin structures. J. Molec. Biol. 250, 648–658 (1995)

    Article  CAS  Google Scholar 

  23. Perutz, M.F. Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970).

    Article  CAS  Google Scholar 

  24. Shaanan, B. Structure of human oxyhaemoglobin at 2.1 Å resolution. J. Molec. Biol. 171, 31–59 (1983).

    Article  CAS  Google Scholar 

  25. Baldwin, J.M. The structure of human carbonmonoxy haemoglobin at 2.7 Ångstroms resolution. J. Molec. Biol. 136, 103–128 (1980).

    Article  CAS  Google Scholar 

  26. Fermi, G. & Perutz, M.F. in Atlas of molecular structures in biology (eds Phillips, D.C. & Richards, F. M.) 1–104 (Clarendon Press, Oxford, 1981).

    Google Scholar 

  27. Baldwin, J.M. & Chothia, C. Haemoglobin: the structural changes related to ligand binding and its allosteric mechanism. J. Molec. Biol. 129, 183–191 (1979).

    Article  Google Scholar 

  28. Shih, D.T.b., Luisi, B.F., Miyazaki, G., Perutz, M.F. & Nagai, K.A. Mutagenic study of the allosteric linkage of His(HC3)146β in haemoglobin. J. Molec. Biol. 230, 1291–1296 (1993).

    Article  CAS  Google Scholar 

  29. Perutz, M.F., Shih, D.T.b & Williamson, D. The chloride effect in human haemoglobin a new kind of allosteric mechanism. J. Molec. Biol. 239, 555–560 (1994).

    Article  CAS  Google Scholar 

  30. D'Avino, R. et al. Molecular characterization of the functionally distinct hemoglobins of the Antarctic fish Trematomus newnesi. J. Biol. Chem. 269, 9675–9681 (1994).

    CAS  PubMed  Google Scholar 

  31. Caruso, C., Rutigliano, B., Romano, M. & diPrisco, G. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochim. Biophys. Acta. 1078, 273–282 (1991).

    Article  CAS  Google Scholar 

  32. Gorr, T., Kleinschmidt, T., Sgouros, J.G. & Kasang, L. A ‘living fossil’ sequence: Primary structure of the coelacanth Latimeria chalumnae hemoglobin - evolutionary and functional aspects. Biol. Chem. Hoppe Seyler 372, 599–612 (1991).

    Article  CAS  Google Scholar 

  33. Perutz, M.F. Species adaptation in a protein molecule. Molec. Biol. Evol. 1, 1–28 (1983).

    CAS  Google Scholar 

  34. Komiyama, N.H., Miyazaki, G., Tame, J. & Nagai, K. Transplanting a unique allosteric effect from crocodile into human haemoglobin. Nature 373, 244–246 (1995).

    Article  CAS  Google Scholar 

  35. Howard, A.J. et al. The use of an imaging proportional counter in macromolecular crystallography. J. Appl. Crystallogr. 20, 383–387 (1987).

    Article  CAS  Google Scholar 

  36. Brünger, A.T., Kuriyan, J. & Karplus, M. Crystallography R-factor refinement by molecular dynamics. Science 235, 458–460 (1987).

    Article  Google Scholar 

  37. McRee, D.E. A visual protein crystallographic software system X11/Xview. J. Molec. Graphics 10, 44–47 (1992).

    Article  Google Scholar 

  38. Rossmann, M. & Argos, P. A comparison of the heme binding pocket in globins and cytochrome b5. J. Biol. Chem. 250, 7525–7532 (1975).

    CAS  PubMed  Google Scholar 

  39. Weiner, S.J. et al. A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984).

    Article  CAS  Google Scholar 

  40. Getzoff, E.D. et al. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306, 287–290 (1983).

    Article  CAS  Google Scholar 

  41. Fago, A. et al. Polymerising Root-effect fish haemoglobin with high subunit heterogeneity correlation with primary structure. Eur. J. Biochem. 218, 829–835 (1993).

    Article  CAS  Google Scholar 

  42. Caruso, C., Rutigliano, B., Riccio, A., Kunzmann, A. & diPrisco, G. The amino acid sequence of the single hemoglobin of the high-Antarctic fish Bathydraco marri Norman. Comp. Biochem. Physiol. 102B, 941–946 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mylvaganam, S., Bonaventura, C., Bonaventura, J. et al. Structural basis for the Root effect in haemoglobin. Nat Struct Mol Biol 3, 275–283 (1996). https://doi.org/10.1038/nsb0396-275

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing