Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo

Abstract

Binding of Ras to c-Raf-1 is a pivotal step of many mitogenic signalling pathways. Based on the recent crystal structure of the complex of Rap1 A with the Ras-binding domain of Raf, mutations were introduced in c-Raf-1 and their effects on Ras/Raf binding affinity in vitro and Ras/Raf regulated gene expression in vivo were analysed. Our data reveal an empirical semi-logarithmic correlation between dissociation constants and Raf-induced gene activity. The functional epitope that primarily determines binding affinity consists of residues Gin 66, Lys 84 and Arg 89 in Raf. This quantitative structure-activity investigation may provide a general approach to correlate structure-guided biochemical analysis with biological function of protein–protein interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Daum, G., Eisenmann-Tappe, I., Fries, H.W., Troppmair, J. & Rapp, U. The ins and outs of Raf kinases. Trends Biochem. Sci. 19, 474–480 (1994).

    Article  CAS  Google Scholar 

  2. Koide, H., Satoh, T., Nakafuku, M. & Kaziro, Y. GTP-dependent association of Raf-1 with H-Ras: Identification of Raf as a target downstream of Ras in mammalian cells. Proc. Natl. Acad. Sci. USA 90, 8683–8686 (1993).

    Article  CAS  Google Scholar 

  3. Moodie, S.A., Willumsen, B.M., Weber, M.J. & Wolfman, A. Complexes of Ras-GTP with Raf-1 and mitogen activated protein kinase kinase. Science 260, 1658–1661 (1993).

    Article  CAS  Google Scholar 

  4. Van Aelst, L., Barr, M., Marcus, S., Polverino, A. & Wigler, M. Complex formation between Ras and Raf and other protein kinases. Proc. Natl. Acad. Sci. USA 90, 6213–6217 (1993).

    Article  CAS  Google Scholar 

  5. Voijtek, A.B., Hollenberg, S.M. & Cooper, J.A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  Google Scholar 

  6. Warne, P.H., Rodriguez Viciana, P. & Downward, J. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364, 352–355 (1993).

    Article  CAS  Google Scholar 

  7. Zhang, X.-f. et. al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364, 308–313 (1993).

    Article  CAS  Google Scholar 

  8. Wiesmüller, L. & Wittinghofer, A. Signal transduction pathways involving Ras. Cell. Signal. 6, 247–267 (1994).

    Article  Google Scholar 

  9. Barbacid, M. ras genes. A. Rev. Biochem. 56, 779–827 (1987).

    Article  CAS  Google Scholar 

  10. Bos, J.L. ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  Google Scholar 

  11. Chuang, E. et al. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Molec. Cell. Biol. 14, 5318–5325 (1994).

    Article  CAS  Google Scholar 

  12. Emerson, S.D. et al. Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 determined by heteronuclear three-dimensional NMR spectroscopy. Biochemistry 33, 7745–7752 (1994).

    Article  CAS  Google Scholar 

  13. Fridman, M. et al. The minimal fragments of c-Raf-1 and NF-1 that can suppress v-Ha-Ras-induced malignant phenotype. J. Biol. Chem. 269, 30105–30108 (1994).

    CAS  PubMed  Google Scholar 

  14. Scheffler, J.E. et al. Characterization of a 78-residue fragment of c-Raf-1 that comprises a minimal binding domain for the interaction with Ras-GTP. Biochemistry 35, 22340–22346 (1994).

    Google Scholar 

  15. Herrmann, C., Martin, G.A. & Wittinghofer, A. Quantitative analysis of the complex between p21ras and the Ras-binding domain of the human Raf-1 protein kinase. J. Biol. Chem. 270, 2901–2905 (1995).

    Article  CAS  Google Scholar 

  16. Pawson, T. Protein modules and signalling networks. Nature 373, 573–580 (1995).

    Article  CAS  Google Scholar 

  17. Bruder, J.T., Heidecker, G. & Rapp, U.R. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promotors requires Raf-1 kinase. Genes Dev. 6, 545–556 (1992).

    Article  CAS  Google Scholar 

  18. Troppmair, J. et al. Mitogen-activated protein kinase/Extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J. Biol. Chem. 269, 7030–7035 (1994).

    CAS  PubMed  Google Scholar 

  19. Leevers, S.J., Paterson, H.F. & Marshall, C.J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369, 411–414 (1994).

    Article  CAS  Google Scholar 

  20. Stokoe, D., Macdonald, S.G., Cadwallader, K., Symons, M. & Hancock, J.F. Activation of Raf as a result of recruitment to the plasma membrane. Science 264, 1463–1467 (1994).

    Article  CAS  Google Scholar 

  21. Marshall, M.S. The effector interactions of p21 ras. Trends Biochem. Sci. 18, 250–254 (1993).

    Article  CAS  Google Scholar 

  22. Polakis, P. & McCormick, F. Structural requirements for the interaction of p21ras with GAP, exchange factors, and its biological effector targets. J. Biol. Chem. 268, 9157–9160 (1993).

    CAS  PubMed  Google Scholar 

  23. Melnick, M.B., Perkins, L.A., Lee, M., Ambrosia, L. & Perrimon, N. Developmental and molecular characterization of mutations in the drosophila-raf serine/threonine kinase. Development 118, 127–138 (1993).

    CAS  PubMed  Google Scholar 

  24. Fabian, J.R., Vojtek, A.B., Cooper, J.A. & Morrison, D.K. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc Natl. Acad. Sci. U.S.A. 91, 5982–5986 (1994).

    Article  CAS  Google Scholar 

  25. Dent, P., Jelinek, T., Morrison, D.K., Weber, M.J. & Sturgill, T.W. Reversal of Raf-1 activation by purified and membrane-associated protein phosphatases. Science 268 1902–1906 (1995).

    Article  CAS  Google Scholar 

  26. Dent, P., Reardon, D.B., Morrison, D.K. & Sturgill, T.W. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras independent mechanisms in vitro. Molec. Cell. Biol. 15, 4125–4135 (1995).

    Article  CAS  Google Scholar 

  27. Marais, R., Light, Y., Paterson, H.F. & Marshall, C.J. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14, 3136–3145 (1995).

    Article  CAS  Google Scholar 

  28. Seger, R. & Krebs, E.G. The MAPK signaling cascade. FASEB J. 9, 726–735 (1995).

    Article  CAS  Google Scholar 

  29. Janknecht, R., Ernst, W.H., Pingoud, V. & Nordheim, A. Activation of ternary complex factor Elk-1 by MAP kinases. EMBO J. 12, 5097–5104 (1993).

    Article  CAS  Google Scholar 

  30. Marais, R., Wynne, J. & Treisman, R. The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381–393 (1993).

    Article  CAS  Google Scholar 

  31. Janknecht, R., Cahill, M.A. & Nordheim, A. Signal integration at the c-fos promoter. Carcinogenesis 16, 443–450 (1995).

    Article  CAS  Google Scholar 

  32. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F. & Wittinghofer, A. The 2.2Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf 1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  CAS  Google Scholar 

  33. Pai, E.F., Kabsch, W., Krengel, U., Holmes, K.C., John, J. & Wittinghofer, A. Structure of the guanine-nudeotide-binding domain of the Ha-ras oncogene product p21 in thetriphosphate conformation. Nature 341, 209–214 (1989).

    Article  CAS  Google Scholar 

  34. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. A ras-related gene with transformation suppressor activity. Cell 56, 77–84 (1989).

    Article  CAS  Google Scholar 

  35. Zhang, K., Noda, M., Vass, W.C., Papageorge, A.G. & Lowy, D.R. Identification of divergent amino acids that mediate the opposing effects of ras and Krev-1. Science 249, 162–165 (1990).

    Article  CAS  Google Scholar 

  36. Marshall, M.S. et al. Identification of amino acid residues required for Ras p21 ras target activation. Molec. Cell. Biol. 8, 3997–4004 (1991).

    Article  Google Scholar 

  37. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  38. Gibbs, J.B. & Olif, A. Pharmaceutical research in oncology. Cell 79, 193–198 (1994).

    Article  CAS  Google Scholar 

  39. Emerson, S.D. et al. Solution structure of the Ras-binding domain of c-Raf-1 and identification of its Ras interaction surface. Biochemistry 34, 6911–6918 (1995).

    Article  CAS  Google Scholar 

  40. Barnard, D. et al. Identification of the sites of interaction between c-Raf-1 and Ras-GTP. Oncogene 10, 1283–1290 (1995).

    CAS  Google Scholar 

  41. Cunningham, B.C. & Wells, J.A. Comparison of a structural and a functional epitope. J. Molec. Biol. 234, 554–563 (1993).

    Article  CAS  Google Scholar 

  42. Jin, L., Fendly, B.M. & Wells, J.A. High resolution functional analysis of antibody-antigen interactions. J. Molec. Biol. 226, 851–865 (1992).

    Article  CAS  Google Scholar 

  43. Kelley, R.F. & O'Connel, M.P. Thermodynamic analysis of an antibody functional epitope. Biochemistry 32, 6828–6835 (1993).

    Article  CAS  Google Scholar 

  44. Cunningham, B.C. & Wells, J.A. Rational design of receptor-specific variants of human growth hormone. Proc Natl. Acad. Sci. U.S.A. 88, 3407–3411 (1991).

    Article  CAS  Google Scholar 

  45. Brtva, T.R. et al. Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270, 9809–9812 (1995).

    Article  CAS  Google Scholar 

  46. anknecht, R. & Nordheim, A. Gene regulation by Ets proteins. Biochim. Biophys. Acta 1155, 46–356 (1993).

    Google Scholar 

  47. Wittinghofer, A. & Herrmann, C. Ras-effeetor interactions, the problem of specificity. FEBS Lett. 369, 52–56 (1995).

    Article  CAS  Google Scholar 

  48. Block, C. & Wittinghofer, A. Switching to Rac and Rho. Structure 3, 1281–1284 (1995).

    Article  CAS  Google Scholar 

  49. John, J., Frech, M. & Wittinghofer, A. Biochemical properties of Ha-ras encoded p21 mutants and mechanism of the autophosphorylation reaction. J. Biol. Chem. 263, 11792–11799 (1988).

    CAS  Google Scholar 

  50. Barettino, D., Feigenbutz, M., Valcàrel, R. & Stunnenberg, H.G. Improved method for PCR-mediated site-directed mutagenesis. Nucl. Acids Res. 22, 541–542 (1994).

    Article  CAS  Google Scholar 

  51. Meloche, S., Pagès, G. & Pouysségur, J. Functional expression and growth factor activation of an epitope-tagged p44 mitogen activated protein kinase, p44mapk. Molec. Biol. Cell 3, 63–71 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Block, C., Janknecht, R., Herrmann, C. et al. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Nat Struct Mol Biol 3, 244–251 (1996). https://doi.org/10.1038/nsb0396-244

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0396-244

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing