Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T and R states in the crystals of bacterial L–lactate dehydrogenase reveal the mechanism for allosteric control

Abstract

The crystal structure of L–lactate dehydrogenase from Bifidobacterium longum, determined to 2.5 Å resolution, contains a regular 1:1 complex of T– and R–state tetramers. A comparison of these two structures within the same crystal lattice and kinetical characterization of the T–R transition in solution provide an explanation for the molecular mechanism of allosteric activation. Substrate affinity is controlled by helix sliding between subunits which is triggered by the binding of the activator, fructose 1,6–bisphosphate. The proposed mechanism can explain activation by chemical modification and mutagenesis, as well as suggesting why vertebrate counterparts are not allosteric.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perutz, M.F. Mechanism of Cooperativity and Allosteric Regulation in Proteins (Cambridge University Press, Cambridge, England, 1989).

    Book  Google Scholar 

  2. Holbrook, J.J., Liljas, A., Steindel, S.J. & Rossmann, M.G. in The Enzymes (ed. Boyer, P.D.) 11, 191–292, (Academic, New York, 1975).

    Google Scholar 

  3. Garvie, E.I. Bacterial lactate dehydrogenases. Microbiol. Rev. 44, 106–139 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Minowa, T., Iwata, S., Sakai, H., Masaki, H. & Ohta, T. Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene 85, 161–168(1989).

    Article  CAS  Google Scholar 

  5. Iwata, S., Minowa, T., Sakai H. & Ohta, T. Amino acid residues in the allosteric site of L-lactate dehydrogenase from Bifidobacterium longum. Agric. Biol. Chem. 53, 3365–3366 (1989).

    CAS  Google Scholar 

  6. de Vries, W., Gerbrandy, S.J. and Stouthamer, A.H. Carbohydrate metabolism in Bifidobacterium bifidum. Biochim. biophys. Acta 136, 415–425 (1967).

    Article  CAS  Google Scholar 

  7. Ohta,T., Minowa, T., Yokota, K. & Iwata, S. Mechanism of allosteric transition of bacterial L-lactate dehydrogenase. Discuss. Faraday Soc. 93, 153–161 (1992).

    Article  CAS  Google Scholar 

  8. Iwata, S., Minowa, T., Mikami, B., Morita, Y. & Ohta, T. Crystallization of and preliminary crystallographic data for allosteric L-lactate dehydrogenase fromBifidobacterium longum. J. Biochem. 106, 558–559 (1989).

    Article  CAS  Google Scholar 

  9. Iwata, S. & Ohta, T. Molecular basis of allosteric activation of bacterial L-lactate dehydrogenase. J. molec. Biol. 230, 21–27 (1993).

    Article  CAS  Google Scholar 

  10. Piontek, K., Chakrabarti, P., Schär, H.-P., Rossmann, M.G. & Zuber, H. Structure determination and refinement of Bacillus stearothermophiluslactate dehydrogenase. Proteins 7, 74–92 (1990).

    Article  CAS  Google Scholar 

  11. Rossmann, M.G. et. al., Molecular symmetry axes and subunit interfaces in certain dehydrogenases. J. molec. Biol. 76, 533–537 (1973).

    Article  CAS  Google Scholar 

  12. Clarke, A.R. et. al. Site-directed mutagenesis reveals role of mobile arginine residue in lactate dehydrogenase catalysis. Nature 324, 699–702 (1986).

    Article  CAS  Google Scholar 

  13. Monod, J., Wyman, J. & Changeux, J.P. On the nature of allosteric transitions: A plausible model. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  14. Koide, S., Yokoyama, S., Matsuzawa, H., Miyazawa, T. & Ohta, T. Conformational equilibrium of an enzyme catalytic site in the allosteric transition. Biochemistry 31, 5362–5368 (1992).

    Article  CAS  Google Scholar 

  15. Adams, M.J. et al. Structure of lactate dehydrogenase at 2.8 Å resolution. Nature 227, 1098–1103 (1970).

    Article  CAS  Google Scholar 

  16. White, J.L. et al. A comparison of the structures of apo dogfish M4 lactate dehydrogenase and its ternary complexes. J. molec. Biol. 102, 759–779 (1976).

    Article  CAS  Google Scholar 

  17. Taguchi, H., Matsuzawa, H. & Ohta, T. L-lactate dehydrogenase from Thermus caldophilus GK24, an extremely thermophilic bacterium. Eur. J. Biochem. 145, 283–290 (1984).

    Article  CAS  Google Scholar 

  18. Machida, M., Matsuzawa, H. & Ohta, T. Fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase from Thermus aquaticus YT-1, an extreme thermophile: activation by citrate and modification reagents and comparison with Thermus caldophilus GK24 L-lactate dehydrogenase. J. Biochem. 97, 899–909 (1985).

    Article  CAS  Google Scholar 

  19. Matsuzawa, H., Machida, M., Kunai, K., Ito, Y. & Ohta, T. Identification of an allosteric site residue of a fructose 1,6-bisphosphate-dependent L-lactate dehydrogenase of Thermus caldophilus GK24: production of non-allosteric form by protein engineering. FEBS Lett. 233, 375–387 (1988).

    Article  CAS  Google Scholar 

  20. Schröder, G., Matsuzawa, H. & Ohta, T. Involvement of the conserved histidine-188 residue in the L-lactate dehydrogenase from Thermus caldophilus GK24 in allosteric regulation by fructose 1,6-bisphosphate. Biochim. biophys. Acta 152, 1236–1241 (1988).

    Google Scholar 

  21. Minowa, T. PhD thesis, A study on the activation mechanism of allosteric L-lactate dehydrogenase with protein engineering. (The University of Tokyo, Tokyo, Japan, 1990).

    Google Scholar 

  22. Eventoff, W. et al. Structural adaptations of lactate dehydrogenase isozymes. Proc. natn. Acad. Sci. U.S.A. 74, 2677–2681 (1977).

    Article  CAS  Google Scholar 

  23. Hogrefe, H.H., Griffith, J.P., Rossmann, M.G. & Goldberg, E. Characterization of the antigenic sites on the refined 3 Å resolution structure of mouse testicular lactate dehydrogenase C4 . J. biol. Chem. 262, 13155–13162 (1987).

    CAS  PubMed  Google Scholar 

  24. Grau, U.M., Trommer, W.E. & Rossmann, M.G. Structure of the active ternary complex of pig heart lactate dehydrogenase with S-lac-NAD+ at 2.7 Å resolution. J. molec. Biol. 151, 289–307 (1981).

    Article  CAS  Google Scholar 

  25. Abad-zapatero, C., Griffith, J.P., Sussman, J.L. & Rossmann, M.G. Refined crystal structure of dogfish M4 apo-lactate dehydrogenase. J. molec. Biol. 198, 445–467 (1987).

    Article  CAS  Google Scholar 

  26. Wigley, D.B. et al. Structure of a ternary complex of an allosteric lactate dehydrogenase from Bacillus stearothermophilus at 2.5 Å resolution. J. molec. Biol. 223, 317–335 (1992).

    Article  CAS  Google Scholar 

  27. Clarke, A.R., Atkinson, T., Campbell, J.W. & Holbrook, J.J. The assembly mechanism of the lactate dehydrogenase tetramer from Bacillus stearothermophilus: the equilibrium relationships between quaternary structure and the binding of fructose 1,6-bisphosphate. Biochim. biophys. Acta 829, 287–396 (1985).

    Google Scholar 

  28. Clarke, A.R. et al. A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure. Biochim. biophys. Acta 913, 72–80 (1987).

    Article  CAS  Google Scholar 

  29. Barford, D. & Johnson, L.N. The allosteric transition of glycogen phosphorylase. Nature 340, 609–616 (1989).

    Article  CAS  Google Scholar 

  30. Schirmer, T. & Evans, P.R. Structural basis of the allosteric behaviour of phosphofructokinase. Nature 343, 140–145 (1990).

    Article  CAS  Google Scholar 

  31. Perutz, M.F. Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970).

    Article  CAS  Google Scholar 

  32. Sprang, S.R. et al. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336, 215–221 (1988).

    Article  CAS  Google Scholar 

  33. Sakabe, N. A focusing Weissenberg camera with multi-layer-line screens for macromolecular crystallography.J. appl. Crystallogr. 16, 542–547 (1983).

    Article  CAS  Google Scholar 

  34. Higashi, T. The processing of diffraction data taken on a screenless Weissenberg camera for macromolecular crystallography. J. appl. Crystallogr. 22, 9–18 (1989).

    Article  CAS  Google Scholar 

  35. Bernstein, F.C. et al. The protein data bank: a computer based archival file for macromolecular structures. J. molec. Biol. 112, 535–542 (1977).

    Article  CAS  Google Scholar 

  36. Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. & Weng, J. in Crystallographic databases — information content, software systems, scientific applications (ed. Alien, F. H. et al.) 107–132 (Data Commission of the International Union of Crystallography, Bonn/Cambridge/Chester, 1987).

    Google Scholar 

  37. Matsuura, Y. AUTOMR: an automatic processing program system for the molecular replacement method. J. appl. Crystallogr. 24, 1063–1066 (1991).

    Article  Google Scholar 

  38. Brünger, A.T., Kuriyan, J. & Karplus, M., Crystallographic R-factor refinement by molecular dynamics. Science 235, 458–460 (1987)

    Article  Google Scholar 

  39. Ramachandran, G.N. & Sasisekharan, V. Conformation of poly peptides and proteins. Adv. Prot. Chem. 23, 283–438 (1968)

    CAS  Google Scholar 

  40. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemistry of protein structures. J. appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaad, M. Improved methods for building models in electron density maps and the location of errors in these models. Acta. Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  42. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  43. Carson, M. RIBBONS 2.0. J. appl. Crystallogr. 24, 958–961 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwata, S., Kamata, K., Yoshida, S. et al. T and R states in the crystals of bacterial L–lactate dehydrogenase reveal the mechanism for allosteric control. Nat Struct Mol Biol 1, 176–185 (1994). https://doi.org/10.1038/nsb0394-176

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0394-176

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing