Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase

Abstract

Glutamyl-tRNA synthetases (GluRSs) are divided into two distinct types, with regard to the presence or absence of glutaminyl-tRNA synthetase (GlnRS) in the genetic translation systems. In the original 19-synthetase systems lacking GlnRS, the 'non-discriminating' GluRS glutamylates both tRNAGlu and tRNAGln. In contrast, in the evolved 20-synthetase systems with GlnRS, the 'discriminating' GluRS aminoacylates only tRNAGlu. Here we report the 2.4 Å resolution crystal structure of a 'discriminating' GluRS·tRNAGlu complex from Thermus thermophilus. The GluRS recognizes the tRNAGlu anticodon bases via two α-helical domains, maintaining the base stacking. We show that the discrimination between the Glu and Gln anticodons (34YUC36 and 34YUG36, respectively) is achieved by a single arginine residue (Arg 358). The mutation of Arg 358 to Gln resulted in a GluRS that does not discriminate between the Glu and Gln anticodons. This change mimics the reverse course of GluRS evolution from anticodon 'non-dicsriminating' to 'discriminating'.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the complex.
Figure 2: The anticodon interface in the T. thermophilus GluRS·tRNAGlu complex (stereo view).
Figure 3: The third anticodon base recognition.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Lapointe, J., Duplain, L. & Proulx, M. J. Bacteriol. 165, 88–93 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schön, A., Kannangara, G., Gough, S. & Söll, D. Nature 331, 187–190 (1988).

    Article  PubMed  Google Scholar 

  3. Rogers, K.C. & Söll, D. J. Mol. Evol. 40, 476–481 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Gagnon, Y., Lacoste, L., Champagne, N. & Lapointe, J. J. Biol.Chem. 271, 14856–14863 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Lamour, V. et al. Proc. Natl. Acad. Sci. U. S. A. 91, 8670–8674 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siatecka, M., Rozek, M., Barciszewski, J. & Mirande, M. Eur. J. Biochem. 256, 80–87 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Curnow, A.W., Tumbula, D.L., Pelaschier, J.T., Min, B. & Söll, D. Proc. Natl. Acad. Sci. U. S. A. 95, 12838–12843 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Becker, H.D. & Kern, D. Proc. Natl. Acad. Sci. U. S. A. 95, 12832–12837 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Handy, J. & Doolittle, R.F. J. Mol. Evol. 49, 709–715 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hara-Yokoyama, M., Yokoyama, S. & Miyazawa, T. J. Biochem. 96, 1599–1607 (1984).

    Article  CAS  PubMed  Google Scholar 

  11. Nureki, O. et al. Science 267, 1958–1965 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Robertus, J.D. et al. Nature 250, 546–551 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Kim, S.H. et al. Science 185, 435–440 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Rould, M.A., Perona, J.J., Söll, D. & Steitz, T.A. Science 246, 1135–1142 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Rould, M.A., Perona, J.J. & Steitz, T.A. Nature 352, 213–218 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Madore, E., et al. Eur. J. Biochem. 266, 1128–1135 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Brown, J.R. & Doolittle, W.F. J. Mol. Evol. 49, 485–495 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Tomb, J.F. et al. Nature 388, 539–547 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Curnow, A.W., Ibba, M. & Söll, D. Nature 382, 589–590 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Cavarelli, J., Rees, B., Ruff, M., Thierry, J.-C. & Moras, D. Nature 362, 181–184 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Schmitt, E. et al. EMBO J. 17, 5227–5237 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Auld, D.S. & Schimmel, P. Science 267, 1994–1996 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Auld, D.S. & Schimmel, P. EMBO J. 15, 1142–1148 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sekine, S. et al. J. Mol. Biol. 256, 685–700 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Sekine, S., Nureki, O., Tateno, M. & Yokoyama, S. Eur. J. Biochem. 261, 354–360 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Otwinowski, Z. & Minor, W. In Methods Enzymol., Vol. 276. (eds. Carter, C.W.J. & Sweet, R.M.) 307–325 (Academic Press, London; 1997).

    Google Scholar 

  27. CCP4 Acta Cryst. D50, 760–763 (1994).

  28. Jones, T.A., Zou, J.-Y., Cowan, S.W. & Kjeldgaard, M. Acta Cryst. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  29. Brünger, A.T. X-PLOR: a system for X-ray crystallography and NMR. (Yale Univ. Press, New Haven; 1992).

    Google Scholar 

  30. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. J. Appl. Cryst. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  31. Sugiura, I. et al. Structure Fold. Des. 8, 197–208 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kraulis, P.J. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  33. Merritt, E.A. & Murphy, M.E.P. Acta Cryst. D50, 869–873 (1994).

    CAS  Google Scholar 

Download references

Acknowledgements

S.Y. is the recipient of Grants-in-Aid for Science Research on Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan; S.S. was supported by grants from the JSPS Research Fellowships for Young Scientists and from the RIKEN Special Postdoctoral Researchers Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitry G. Vassylyev or Shigeyuki Yokoyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, Si., Nureki, O., Shimada, A. et al. Structural basis for anticodon recognition by discriminating glutamyl-tRNA synthetase. Nat Struct Mol Biol 8, 203–206 (2001). https://doi.org/10.1038/84927

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84927

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing