Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Insight
  • Published:

A novel NMR method for determining the interfaces of large protein–protein complexes

Abstract

Identification of the interfaces of large (Mr > 50,000) protein–protein complexes in solution by high resolution NMR has typically been achieved using experiments involving chemical shift perturbation and/or hydrogen-deuterium exchange of the main chain amide groups of the proteins. Interfaces identified using these techniques, however, are not always identical to those revealed using X-ray crystallography. In order to identify the contact residues in a large protein–protein complex more accurately, we developed a novel NMR method that uses cross-saturation phenomena in combination with TROSY detection in an optimally deuterium labeled system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of the cross-saturation method.
Figure 2: Pulse scheme for the cross-saturation method.
Figure 3: The results of the cross-saturation experiment.
Figure 4: Plots of the intensity ratios of the crosspeaks in the cross-saturation experiments.
Figure 5: Comparison of the binding sites of the FB–Fc complex.

References

  1. Foster, M. P. et al. Chemical shift as a probe of molecular interfaces: NMR studies of DNA binding by the three amino-terminal zinc finger domains from transcription factor IIIA. J. Biomol NMR. 12, 51– 71 (1998).

    Article  CAS  Google Scholar 

  2. Paterson, Y., Englander, S.W. & Roder, H. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 249 755–759 (1990).

    Article  CAS  Google Scholar 

  3. Torigoe, H., Shimada, I., Saito, A., Sato, M. & Arata, Y. Sequential 1H NMR assignments and secondary structure of the B domain of staphylococcal protein A: structural changes between the free B domain in solution and the Fc-bound B domain in crystal. Biochemistry 29, 8787–8793 ( 1990).

    Article  CAS  Google Scholar 

  4. Gouda, H. et al. Three-dimensional solution structure of the B domain of staphylococcal protein A: comparisons of the solution and crystal structures. Biochemistry 31, 9665–9672 (1992).

    Article  CAS  Google Scholar 

  5. Gouda, H. et al. NMR study of the interaction between the B domain of staphylococcal protein A and the Fc portion of immunoglobulin G. Biochemistry 37, 129–136 ( 1998).

    Article  CAS  Google Scholar 

  6. Kato, K. et al. Model for the complex between protein G and an antibody Fc fragment in solution. Structure 3, 79– 85 (1995).

    Article  CAS  Google Scholar 

  7. Enokizono, J. et al. NMR analysis of the interaction between protein L and Ig light chains. J. Mol. Biol. 270, 8– 13 (1997).

    Article  CAS  Google Scholar 

  8. Langone, J.J. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32 , 157–252 (1982).

    Article  CAS  Google Scholar 

  9. Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).

    Article  CAS  Google Scholar 

  10. Pervushin, K., Riek, R., Wider, G. & Wüthrich, K. At tenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc. Natl Acad. Sci. USA 94, 12366–12371 ( 1997).

    Article  CAS  Google Scholar 

  11. Pervushin, K., Wider, G. & Wüthrich, K. Single transition-to-single transition polarization transfer (ST2-PT) in [15N,1H]-TROSY. J. Biomol. NMR 12, 345–348 (1998).

    Article  CAS  Google Scholar 

  12. Salzmann, M., Pervushin, K., Wider, G., Senn, H. & Wüthrich, K. TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc. Natl Acad. Sci. USA 95, 13585–13590 (1998).

    Article  CAS  Google Scholar 

  13. Kalk, A. & Berendsen, H.J.C. Proton magnetic relaxation and spin diffusion in proteins. J. Magn. Res. 24, 343–366 (1976).

    CAS  Google Scholar 

  14. Akasaka, K. Longitudinal relaxation of protons under cross saturation and spin diffusion . J. Magn. Res. 45, 337– 343 (1981).

    CAS  Google Scholar 

  15. Endo, S. & Arata, Y. Proton nuclear magnetic resonance study of human immunoglobulin G1 and their proteolytic fragments: structure of the hinge region and effects of a hinge-region deletion on internal flexibility . Biochemistry 24, 1561– 1568 (1985).

    Article  CAS  Google Scholar 

  16. Ito, W., Nishimura, M., Sakato, N., Fujio, H. & Arata, Y. A 1H NMR method for the analysis of antigen-antibody interactions: binding of a peptide fragment of lysozyme to anti-lysozyme monoclonal antibody. J. Biochem. 102, 643–649 (1987).

    Article  CAS  Google Scholar 

  17. Kupce, E, Wagner, G. Wideband homonuclear decoupling in protein spectra. J. Magn. Res. B. 109, 329 –333 (1995).

    Article  CAS  Google Scholar 

  18. Jendeberg, L. et al. The mechanism of binding staphylococcal protein A to immunoglobin G does not involve helix unwinding. Biochemistry 35 , 22–31 (1996).

    Article  CAS  Google Scholar 

  19. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277– 293 (1995).

    Article  CAS  Google Scholar 

  20. Ferrin, T.E., Huang, C.C., Jarvis, L.E. & Langridge, R. The MIDAS display system. J. Mol. Graphics 6, 13–27 (1988).

    Article  CAS  Google Scholar 

  21. Huang, C.C., Pettersen, E.F., Klein, T.E., Ferrin, T.E. & Langridge, R. Conic: a fast renderer for space-filling molecules with shadows. J. Mol. Graphics. 9, 230–236 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Delaglio for providing scripts for spectra analysis and M. Nakasako for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichio Shimada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Nakanishi, T., Kami, K. et al. A novel NMR method for determining the interfaces of large protein–protein complexes. Nat Struct Mol Biol 7, 220–223 (2000). https://doi.org/10.1038/73331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/73331

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing