Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Passing the baton in base excision repair

Apurinic/apyrmidinic endonuclease 1 (APE1) plays a central role in DNA repair by cleaving the DNA backbone 5′ of AP sites that result from removal of damaged bases. New structural findings on APE1–DNA cocrystals provide insights into how this enzyme binds and cleaves its substrate and how, like one member in an efficient relay team, it coordinates potentially dangerous steps in the base excision repair pathway.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of single-nucleotide BER and alternatives for aborted intermediates.
Figure 2: Cocrystal structures of BER enzymes bound to DNA.

References

  1. Lindahl, T. Nature, 259, 64–66 ( 1976).

    Article  CAS  Google Scholar 

  2. Lindahl, T. Nature, 362, 709–715 ( 1993).

    Article  CAS  Google Scholar 

  3. Kubota, Y. et al. EMBO J. 15, 6662–6670 (1996).

    Article  CAS  Google Scholar 

  4. Wilson, S. H. Mutat. Res. 407, 203–215 (1998).

    Article  CAS  Google Scholar 

  5. Wilson III, D. M. & Thompson, L.H. Proc. Natl. Acad. Sci. USA. 94, 12754– 12757 (1997).

    Article  CAS  Google Scholar 

  6. Ochs, K. et al. Cancer Research, 59, 1544– 1554 (1999).

    CAS  PubMed  Google Scholar 

  7. Engleward, B. J. Biol. Chem. 273, 5412–5418 (1998).

    Article  Google Scholar 

  8. Loeb, L.A. & Preston, B.D. Annu. Rev. Genet. 20, 201–230 (1986).

    Article  CAS  Google Scholar 

  9. Barrett, T.E. et al. EMBO J. 18, 6599–6609 (1999).

    Article  CAS  Google Scholar 

  10. Wilson III, D.M. et al. J. Biol. Chem. 270, 16002–16007 (1995).

    Article  CAS  Google Scholar 

  11. Masuda, Y. et al. J. Biol. Chem. 273, 30352– 30359 (1998).

    Article  CAS  Google Scholar 

  12. Mol, C.D. et al. Nature 403, 451–456 (2000).

    Article  CAS  Google Scholar 

  13. Gorman, M. A. et al. EMBO J. 16, 6548–6558 (1997).

    Article  CAS  Google Scholar 

  14. Hosfield, D. J. et al. Cell, 98, 397–408 (1999).

    Article  CAS  Google Scholar 

  15. Sawaya, M. R. et al. Biochemistry, 36, 11205– 11215 (1997).

    Article  CAS  Google Scholar 

  16. Withka, J. M. et al. Biochemistry, 30 9931– 9940 (1991).

    Article  CAS  Google Scholar 

  17. Parikh, S. S. et al. EMBO J. 17, 5214–5226 (1998).

    Article  CAS  Google Scholar 

  18. Waters, T. R. et al. J. Biol. Chem. 274, 67– 74 (1999).

    Article  CAS  Google Scholar 

  19. Bennett, R. A. O. et al. Proc. Natl. Acad. Sci. USA. 94, 7166 –7169 (1997).

    Article  CAS  Google Scholar 

  20. Lindahl, T. & Wood, R. D. Science 286, 1897–1905 (1999).

    Article  CAS  Google Scholar 

  21. Buermeyer, A.B., Deschenes, S.M., Baker, S.M. & Liskay, R.M. Annu. Rev. Genet. 33, 533–564 (1999).

    Article  CAS  Google Scholar 

  22. Bharati, S. et al. Nucleic Acids Res. 26, 4953– 4959 (1998).

    Article  CAS  Google Scholar 

  23. Chien, C.T. et al. Proc. Natl. Acad. Sci. USA. 88, 9578 –9582 (1991).

    Article  CAS  Google Scholar 

  24. Caldecott, K. W. et al. Nucleic Acids Res. 24, 4387– 4394 (1996).

    Article  CAS  Google Scholar 

  25. Marintchev, A. et al. Nature Struct. Biol. 6, 884– 893 (1999).

    Article  CAS  Google Scholar 

  26. Prasad, R. et al. J. Biol. Chem. 271, 16000– 16007 (1996).

    Article  CAS  Google Scholar 

  27. Dimitriadis, E. K. et al. J. Biol. Chem. 273, 20540– 20550 (1998).

    Article  CAS  Google Scholar 

  28. Caldecott, K. W. et al. Mol. Cell. Biol. 14, 68– 76 (1994).

    Article  CAS  Google Scholar 

  29. Lavery, R. & Sklenar, H., J. Biomol. Struct. Dyn. 6, 63–91 (1998).

    Article  Google Scholar 

  30. Kraulis, P.J. J. Appl. Cryst. (1991) 24, 946 –950 (1991).

    Article  Google Scholar 

  31. Merritt, E.A. & Bacon, D.J. Methods Enzymol. 277 , 505–524 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Kunkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S., Kunkel, T. Passing the baton in base excision repair. Nat Struct Mol Biol 7, 176–178 (2000). https://doi.org/10.1038/73260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/73260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing