Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Intermediates in the folding of the membrane protein bacteriorhodopsin

Abstract

Assembly of proteins within lipid bilayers is essential for the biogenesis and function of biological membranes. Little is known, however, about the underlying mechanism of assembly, and it is not clear whether it is possible to observe individual folding steps for integral membrane proteins either in vivo or in vitro. Fluorescence spectroscopy is used here to follow the time course of folding events for bacteriorhodopsin in mixed detergent/Iipid micelles. Transient folding-intermediates are detected and binding of the retinal chromophore occurs at a late stage, when it binds to an apoprotein intermediate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huang, K.-S., Bayley, H., Liao, M.-J., London, E. & Khorana, H.G. Refolding of an integral membrane protein. Denaturation, renaturation and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J. biol. Chem. 256, 3802–3809 (1981).

    CAS  PubMed  Google Scholar 

  2. London, E. & Khorana, H.G. Denaturation and renaturation of bacteriorhodopsin in detergents and lipid-detergent mixtures. J. biol. Chem. 257, 7003–7011 (1982).

    CAS  PubMed  Google Scholar 

  3. Eisele, J.-L. & Rosenbusch, J.P. In vitrofolding and oligomerization of a membrane protein. J. biol. Chem. 265, 10217–10220 (1990).

    CAS  Google Scholar 

  4. Paulsen, H., Rümler, U. & Rüdiger, W. Reconsititution of pigment-containing complexes from light-harvesting chlorophyll a/b-binding protein overexpressed in Escherichia coli. Planta 181, 204–211 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Henderson, R., Baldwin, J.M., Ceska, T.A., Zemlin, F., Beckmann, E. & Downing, K.H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. molec. Biol. 213, 899–929 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Hargrave, P.A. Seven-helix receptors. Curr. Opin. struct. Biol. 1, 575–581 (1991).

    Article  CAS  Google Scholar 

  7. Rehorek, M. & Heyn, M.P. Binding of all-trans retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry 18, 4977–4983 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Schreckenbach, T., Walckhoff, B. & Oesterhelt, D. Studies on the retinal-protein interaction in bacteriorhodopsin. Eur.J. Biochem. 76, 499–511 (1977).

    Article  CAS  PubMed  Google Scholar 

  9. Oesterhelt, D., Meentzen, M. & Schumann, L. Reversible dissociation of the purple complex in bacteriorhodopsin and identification of 13-cis and all-trans-retinal as its chromophores. Eur. J. Biochem. 40, 453–463 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Liao, M.-J., London, E. & Khorana, H.G. Regeneration of the native bacteriorhodopsin structure from two chymotryptic fragments. J. biol. Chem. 258, 9949–9955 (1983).

    CAS  PubMed  Google Scholar 

  11. Popot, J.-L., Gerchman, S.-E. & Engelman, D.M. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process. J. molec. Biol. 198, 655–676 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Engelman, D.M. & Steitz, T.A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell 23, 411–422 (1981).

    Article  CAS  PubMed  Google Scholar 

  13. Popot, J.-L. & Engelman, D.M. Membrane protein folding and oligomerization: the two stage model. Biochemistry 29, 4031–4037 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Brouillette, C.G., McMichens, R.B., Stern, L.J. & Khorana, H.G. Structure and thermal stability of monomeric bacteriorhodopsin in mixed phospholipid/detergent micelles. Proteins 5, 38–46 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Greenhalgh, D.A., Farrens, D.L., Subramaniam, S. & Khorana, H.G. Hydrophobic amino acids in the retinal binding pocket of bacteriorhodopsin. J. biol. Chem. 27, 20305–20311 (1993).

    Google Scholar 

  16. Greenhalgh, D.A., Subramaniam, S., Otto, H., Heyn, M.P. & Khorana, H.G. Effect of introducing different carboxylate-containing side chains at position 85 on chromophore formation and proton transport in bacteriorhodopsin. J. biol. Chem. 267, 25734–25738 (1992).

    CAS  PubMed  Google Scholar 

  17. Khorana, H.G. Two light-transducing membrane proteins: bacteriorhodopsin and the mammalian rhodopsin. Proc. natn. Acad. Sci. U.S.A. 90, 1166–1171 (1993).

    Article  CAS  Google Scholar 

  18. Khorana, H.G., Bacteriorhodopsin, a membrane protein that uses light to translocate protons. J. biol. Chem. 263, 7439–7442 (1988).

    CAS  PubMed  Google Scholar 

  19. Kim, P.S. & Baldwin, R.L. Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. A. Rev. Biochem. 51, 459–489 (1982).

    Article  CAS  Google Scholar 

  20. Matouschek, A., Kellis, J.T.,Jr, Serrano, L., Bycroft, M. & Fersht, A.R. Transient folding intermediates characterized by protein engineering. Nature 346, 440–445 (1990).

    Article  Google Scholar 

  21. Radford, S.E., Dobson, C.M. & Evans, P.A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature 358, 302–307 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Elöve, G.A., Chafotte, A.F., Roder, H. & Goldberg, M.E. Early steps in cytochrome c folding probed by time-resolved circular dichroism and fluorescence spectroscopy. Biochemistry 31, 6876–6883 (1992).

    Article  PubMed  Google Scholar 

  23. Jennings, P.A. & Wright, P.E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science 262, 892–896 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. A. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  25. Matthews, C.R. Pathways of protein folding. A. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  26. Schmid, F.X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. A. Rev. Biophys. biomolec. Struct. 22, 123–143 (1993).

    Article  CAS  Google Scholar 

  27. Polland, H.J., Franz, M.A., Zinth, W., Kaiser, W. & Oesterhelt, D. Energy transfer from retinal to amino acids — a time-resolved study of the ultraviolet emission of bacteriorhodopsin. Biochim. biophys. Acta 851, 407–415 (1986).

    Article  CAS  Google Scholar 

  28. Schreckenbach, T., Walckhoff, B. & Oesterhelt, D. Specificity of the retinal binding site of bacteriorhodopsin: chemical and stereochemical requirements for the binding of retinol and retinal. Biochemistry 17, 5353–5359 (1978).

    Article  CAS  PubMed  Google Scholar 

  29. Kahn, T.W., Sturtevant, J.M. & Engelman, D.M. Thermodynamic measurements of the contributions of helix-connecting loops and of retinal to the stability of bacteriorhodopsin. Biochemistry. 31, 8829–8839 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Oesterhelt, D. & Stoeckenius, W. Isolation of the cell membrane of Halobacterium halobiumand its fractionation into red and purple membrane. Meths Enzymol. 31, 667–679 (1974).

    Article  CAS  Google Scholar 

  31. Braiman, M.S., Stern, L.J., Chao, B.H. and Khorana, H.G. Structure-function studies on bacteriorhodopsin. IV. Purification and renaturation of bacterio-opsin polypeptide expressed in Eschericia coli. J. biol. Chem. 262, 9271–9276 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, P., Flitsch, S., Stern, L. et al. Intermediates in the folding of the membrane protein bacteriorhodopsin. Nat Struct Mol Biol 2, 139–143 (1995). https://doi.org/10.1038/nsb0295-139

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing