Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural and kinetic characterization of early folding events in β-lactoglobulin

Abstract

We have defined the structural and dynamic properties of an early folding intermediate of β-lactoglobulin known to contain non-native α-helical structure. The folding of β-lactoglobulin was monitored over the 100 μs–10 s time range using ultrarapid mixing techniques in conjunction with fluorescence detection and hydrogen exchange labeling probed by heteronuclear NMR. An initial increase in Trp fluorescence with a time constant of 140 μs is attributed to formation of a partially helical compact state. Within 2 ms of refolding, well protected amide protons indicative of stable hydrogen bonded structure were found only in a domain comprising β-strands F, G and H, and the main α-helix, which was thus identified as the folding core of β-lactoglobulin. At the same time, weak protection (up to 10-fold) of amide protons in a segment spanning residues 12–21 is consistent with formation of marginally stable non-native α-helices near the N-terminus. Our results indicate that efficient folding, despite some local non-native structural preferences, is insured by the rapid formation of a native-like α/β core domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Folding kinetics of βLG monitored by fluorescence.
Figure 2: Proton occupancy measured by quenched D-H exchange for representative amide protons in various secondary structural elements of βLG plotted versus refolding time (logarithmic scale).
Figure 3: Amide protection results.
Figure 4: Schematic diagram of a subset of the secondary structure of βLG, including the core region of the β-sheet (βF, βG and βH), βA, and the major α-helix (shown as a helical wheel).
Figure 5: Schematic representation of the conformational states encountered during folding of βLG, including the unfolded ensemble, a partially structured intermediate populated on the millisecond time scale and the native state (ribbon diagram based on the X-ray structure24; PDB code 3BLG).

Similar content being viewed by others

References

  1. Kim, P.S. & Baldwin, R.L. Annu. Rev. Biochem. 59, 631–660 (1990).

    Article  CAS  Google Scholar 

  2. Baldwin, R.L. & Rose, G.D. Trends Biochem. Sci. 24, 26–33 (1999).

    Article  CAS  Google Scholar 

  3. Baldwin, R.L. & Rose, G.D. Trends Biochem. Sci. 24, 77–83 (1999).

    Article  CAS  Google Scholar 

  4. Bryngelson, J.D., Onuchic, J.N., Socci, N.D. & Wolynes, P.G. Proteins 21, 167–195 (1995).

    Article  CAS  Google Scholar 

  5. Dill, K.A. et al. Protein Sci. 4, 561–602 (1995).

    Article  CAS  Google Scholar 

  6. Matthews, C.R. Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  7. Roder, H. & Colón, W. Curr. Opin. Struct. Biol. 7, 15–28 (1997).

    Article  CAS  Google Scholar 

  8. Kuwajima, K., Yamaya, H., Miwa, S., Sugai, S. & Nagamura, T. FEBS Lett. 221, 115–118 (1987).

    Article  CAS  Google Scholar 

  9. Hamada, D., Segawa, S.-I. & Goto, Y. Nature Struct. Biol. 3, 868–873 (1996).

    Article  CAS  Google Scholar 

  10. Kuwajima, K., Yamaya, H. & Sugai, S. J. Mol. Biol. 264, 806–822 (1996).

    Article  CAS  Google Scholar 

  11. Nishikawa, K. & Noguchi, T. Methods Enzymol. 202, 31–44 (1991).

    Article  CAS  Google Scholar 

  12. Kuroda, Y., Hamada, D., Tanaka, T. & Goto, Y. Folding Des. 1, 255–263 (1996).

    Article  CAS  Google Scholar 

  13. Cohen, F.E. J. Mol. Biol. 293, 313–320 (1999).

    Article  CAS  Google Scholar 

  14. Mihara, H. & Takahashi, Y. Curr. Opin. Struct. Biol. 7, 501–508 (1997).

    Article  CAS  Google Scholar 

  15. Forge, V. et al. J. Mol. Biol. 296, 1039–1051 (2000).

    Article  CAS  Google Scholar 

  16. Shastry, M.C.R., Luck, S.D. & Roder, H. Biophys. J. 74, 2714–2721 (1998).

    Article  CAS  Google Scholar 

  17. Shastry, M.C.R. & Roder, H. Nature Struct. Biol. 5, 385–392 (1998).

    Article  CAS  Google Scholar 

  18. Roder, H., Elöve, G.A. & Englander, S.W. Nature 335, 700–704 (1988).

    Article  CAS  Google Scholar 

  19. Udgaonkar, J.B. & Baldwin, R.L. Nature 335, 694–699 (1988).

    Article  CAS  Google Scholar 

  20. Gladwin, S.T. & Evans, P.A. Folding Des. 1, 407–417 (1996).

    Article  CAS  Google Scholar 

  21. Sauder, J.M. & Roder, H. Folding Des. 3, 293–301 (1998).

    Article  CAS  Google Scholar 

  22. Roder, H., Elöve, G.A. & Shastry, R.M.C. In Mechanisms of protein folding (ed. Pain, R.H.) 65–104 (Oxford University Press, New York; 2000).

    Google Scholar 

  23. Brownlow, S. et al. Structure 5, 481–495 (1997).

    Article  CAS  Google Scholar 

  24. Qin, B.Y. et al. Biochemistry 37, 14014–14023 (1998).

    Article  CAS  Google Scholar 

  25. Cho, Y., Batt, C.A. & Sawyer, L. J. Biol. Chem. 269, 11102–11107 (1994).

    CAS  PubMed  Google Scholar 

  26. Roder, H. & Wüthrich, K. Proteins 1, 34–42 (1986).

    Article  CAS  Google Scholar 

  27. Bai, Y., Milne, J.S. & Englander, S.W. Proteins 17, 75–86 (1993).

    Article  CAS  Google Scholar 

  28. Woodward, C. Trends Biochem. Sci. 18, 359–360 (1993).

    Article  CAS  Google Scholar 

  29. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  30. Raschke, T.M. & Marqusee, S. Nature Struct. Biol. 4, 298–304 (1997).

    Article  CAS  Google Scholar 

  31. Arai, M. et al. J. Mol. Biol. 275, 149–162 (1998).

    Article  CAS  Google Scholar 

  32. Kuwata, K. et al. Protein Sci 8, 2541–2545 (1999).

    Article  CAS  Google Scholar 

  33. Kim, T.R. et al. Protein Eng. 10, 1339–1345 (1997).

    Article  CAS  Google Scholar 

  34. Bax, A., Griffey, R.H. & Hawkins, B.L. J. Magn. Reson. 55, 301 (1983).

    CAS  Google Scholar 

  35. Mori, S., Abeygunawardana, C., Johnson, M.O. & van Zijl, P.C. J. Magn. Reson. B 108, 94–98 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Era for assistance and M. Taguchi for protein preparation, and J.M. Sauder and R.L. Dunbrack for critical reading of the manuscript. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Culture and Sports of Japan (to K.K. and Y.G.), grants from the National Institutes of Health and the National Science Foundation (to H.R.), and an appropriation from the Commonwealth of Pennsylvania to the Institute for Cancer Research. The NMR facility of Fox Chase Cancer Center was supported by a grant from the Kresge foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuji Goto or Heinrich Roder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwata, K., Shastry, R., Cheng, H. et al. Structural and kinetic characterization of early folding events in β-lactoglobulin. Nat Struct Mol Biol 8, 151–155 (2001). https://doi.org/10.1038/84145

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing