Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex

Abstract

Most large RNAs achieve their active, native structures only as complexes with one or more cofactor proteins. By varying the Mg2+ concentration, the catalytic core of the bI5 group I intron RNA can be manipulated into one of three states, expanded, collapsed or native, or into balanced equilibria between these states. Under near-physiological conditions, the bI5 RNA folds rapidly to a collapsed but non-native state. Hydroxyl radical footprinting demonstrates that assembly with the CBP2 protein cofactor chases the RNA from the collapsed state to the native state. In contrast, CBP2 also binds to the RNA in the expanded state to form many non-native interactions. This structural picture is reinforced by functional splicing experiments showing that RNA in an expanded state forms a non-productive, kinetically trapped complex with CBP2. Thus, rapid folding to the collapsed state functions to self-chaperone bI5 RNA folding by preventing premature interaction with its protein cofactor. This productive, self-chaperoning role for RNA collapsed states may be especially important to avert misassembly of large multi-component RNA–protein machines in the cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Native and non-native bI5core RNA folding upon CBP2 binding.
Figure 2: Mg2+ jump experiments to evaluate the contribution of the expanded state to productive ribonucleoprotein assembly.
Figure 3: Order of addition experiments.
Figure 4: Ribonucleoprotein assembly of the bI5 RNA catalytic core via a collapsed, non-native state.

Similar content being viewed by others

References

  1. Lewis, J.D. & Tollervey, D. Science 288, 1385–1389 (2000).

    Article  CAS  Google Scholar 

  2. Gluick, T.C. & Draper, D.E. J. Mol. Biol. 241, 246–262 (1994).

    Article  CAS  Google Scholar 

  3. Wu, M. & Tinoco, I. Proc. Natl. Acad. Sci USA 95, 11555–11560 (1998).

    Article  CAS  Google Scholar 

  4. Chamberlin, S.I. & Weeks, K.M. J. Am. Chem. Soc. 122, 216–224 (2000).

    Article  CAS  Google Scholar 

  5. Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Woodson, S.A. Science 279, 1940–1943 (1998).

    Article  CAS  Google Scholar 

  6. Powers, T., Daubresse, G. & Noller, H.F. J. Mol. Biol. 232, 362–374 (1993).

    Article  CAS  Google Scholar 

  7. Weeks, K.M. Curr. Opin. Struct. Biol. 7, 336–342 (1997).

    Article  CAS  Google Scholar 

  8. Held, W.A., Ballou, B., Mizushima, S. & Nomura, M. J. Biol. Chem. 249, 3103–3111 (1974).

    CAS  Google Scholar 

  9. Buchmueller, K.L., Webb, A.E., Richardson, D.A. & Weeks, K.M. Nature Struct. Biol. 7, 362–366 (2000).

    Article  CAS  Google Scholar 

  10. Russell, R., Millett, I.S., Doniach, S. & Herschlag, D. Nature Struct. Biol. 7, 367–370 (2000).

    Article  CAS  Google Scholar 

  11. Fang, X. et al. Biochemistry 39, 11107–11113 (2000).

    Article  CAS  Google Scholar 

  12. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  13. Dill, K.A. & Chan, H.S. Nature Struct. Biol. 4, 10–19 (1997).

    Article  CAS  Google Scholar 

  14. Dobson, C.M. & Karplus, M. Curr. Opin. Struct. Biol. 9, 92–101 (1999).

    Article  CAS  Google Scholar 

  15. Pan, J., Thirumalai, D. & Woodson, S.A. J. Mol. Biol. 273, 7–13 (1997).

    Article  CAS  Google Scholar 

  16. Treiber, D.K. & Williamson, J.R. Curr. Opin. Struct. Biol. 9, 339–345 (1999).

    Article  CAS  Google Scholar 

  17. Fang, X., Pan, T. & Sosnick, T.R. Nature Struct. Biol. 6, 1091–1095 (1999).

    Article  CAS  Google Scholar 

  18. Rook, M.S., Treiber, D.K. & Williamson, J.R. J. Mol. Biol. 281, 609–620 (1998).

    Article  CAS  Google Scholar 

  19. Hill, J., McGraw, P. & Tzagoloff, A. J. Biol. Chem. 260, 3235–3238 (1985).

    CAS  Google Scholar 

  20. Weeks, K.M. & Cech, T.R. Cell 82, 221–230 (1995).

    Article  CAS  Google Scholar 

  21. Jaeger, L., Westhof, E. & Michel, F. J. Mol. Biol. 221, 1153–1164 (1991).

    Article  CAS  Google Scholar 

  22. Weeks, K.M. & Cech, T.R. Biochemistry 34, 7728–7738 (1995).

    Article  CAS  Google Scholar 

  23. Fersht, A. Enzyme Structure and Mechanism (Freeman and Co., New York; 1985).

    Google Scholar 

  24. Weeks, K.M. & Cech, T.R. Science 271, 345–348 (1996).

    Article  CAS  Google Scholar 

  25. Costa, M. & Michel, F. EMBO J. 14, 1276–1285 (1995).

    Article  CAS  Google Scholar 

  26. Michel, F. & Westhof, E. J. Mol. Biol. 216, 585–610 (1990).

    Article  CAS  Google Scholar 

  27. Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. Chem. Biol. 3, 993–1009 (1996).

    Article  CAS  Google Scholar 

  28. Golden, B.L., Gooding, A.R., Podell, E.R. & Cech, T.R. Science 282, 259–264 (1998).

    Article  CAS  Google Scholar 

  29. Gish, G. & Eckstein, F. Science 240, 1520–1522 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Searle Scholars Program of the Chicago Community Trust and by the NIH to K.M.W. We thank E. Westhof and C. Massire for modeling the bI5 group I intron RNA and P. Bevilacqua, M. Redinbo and K. Buchmueller for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin M. Weeks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, A., Weeks, K. A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Nat Struct Mol Biol 8, 135–140 (2001). https://doi.org/10.1038/84124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/84124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing