Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Folding of cytochrome c initiated by submillisecond mixing

Abstract

Cytochrome c folding was initiated using a new solution mixer that provides a time window which covers over 90% of the burst phase unresolved by conventional stop-flow measurements. Folding was followed by resonance Raman scattering. Kinetic analysis of the high frequency Raman data indicates that a nascent phase occurs within the mixing dead time of 100 μs. A significant fraction of the protein was found to be trapped in a misfolded bis-histidine form during the nascent phase at pH 4.5, thereby preventing the protein from folding rapidly and homogeneously. The nascent phase was followed by a haem-ligand exchange phase that populates the native histidine-methionine coordinated form through a thermodynamically controlled equilibrium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zwanzig, R., Szabo, A. & Bagchi, B. Levinthal's paradox. Proc. Natl. Acad. Sci. USA 89, 20–22 (1992).

    Article  CAS  Google Scholar 

  2. Evans, P.A. & Radford, S.E. Probing the structure of folding intermediates. Curr. Opin. Struct. Biol. 4, 100–106 (1994).

    Article  CAS  Google Scholar 

  3. Matthews, C.R. Pathways of Protein Folding, Annu. Rev. Biochem. 62, 653–683 (1993).

    Article  CAS  Google Scholar 

  4. Sosnick, T.R., Mayene, L. & Englander, S.W. Molecular collapse: the rate-limiting step in two-state cytochrome c folding. Proteins Struct. Func. Genet. 24, 413–426 (1996).

    Article  CAS  Google Scholar 

  5. Phillips, C.M., Mizutani, Y. & Hochstrasser, R.M. Ultrafast thermally induced unfolding of Rnase A. Proc. Nat. Acad. Sci. USA 92, 7292–7296 (1995).

    Article  CAS  Google Scholar 

  6. Nolting, B., Golbik, P. & Fersht, A.R. Submillisecond events in protein folding. Proc. Nat. Acad. Sci. USA 92, 10668–10672 (1995).

    Article  CAS  Google Scholar 

  7. Williams, S. et al. Fast events in protein folding: helix melting and formation in a small peptide. Biochemistry 35, 691–697 (1995).

    Article  Google Scholar 

  8. Ballew, R.M., Sabelko, J. & Gruebele, M. Direct observation of fast protein folding: the initial collapse of apomyoglobin. Proc. Nat. Acad. Sci. USA 93, 5759–5764 (1996).

    Article  CAS  Google Scholar 

  9. Jones, C.M. et al. Fast events in protein folding initiated by nanosecond laser photolysis. Proc. Nat. Acad. Sci. USA 90, 11860–11864 (1993).

    Article  CAS  Google Scholar 

  10. Pascher, T., Chesick, J.P., Winkler, J.R. & Gray, H.B. Protein folding triggered by electron transfer. Science 271, 1558–1560 (1996).

    Article  CAS  Google Scholar 

  11. Regenfuss, P., Clegg, R.M., Fulwyler, M.J., Barrantes, F.J. & Jovin, T.M. Mixing liquids in microseconds. Rev. Sci. Instrum. 56, 283–290 (1985).

    Article  CAS  Google Scholar 

  12. Takahashi, S., Ching, Y.-c., Wang, J. & Rousseau, D.L. Microsecond generation of oxygen-bound cytochrome c oxidase by rapid solution mixing. J. Biol. Chem. 270, 8405–8407 (1995).

    Article  CAS  Google Scholar 

  13. Bai, Y., Sosnick, T.R., Mayne, L. & Englander, S.W. Protein folding intermediates: native state hydrogen exchange. Science 269, 192–197 (1995).

    Article  CAS  Google Scholar 

  14. Elove, G.A., Bhuyan, A.K. & Roder, H. Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands, Biochemistry 33, 6925–6935 (1994).

    Article  CAS  Google Scholar 

  15. Sosnick, T.R., Mayene, L., Hiller, R. & Englander, S.W. The barriers in protein folding. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  16. Lehrer, S.S. Solute perturbation of protein fluorescence: the quenching of the tryptophyl fluorescence of model compounds and lysozyme by iodide ion. Biochemistry 10, 3254–3263 (1971).

    Article  CAS  Google Scholar 

  17. Peterman, B.F. Measurement of the dead time of a fluorescence stopped-flow instrument. Anal. Biochem. 93, 442–444 (1979).

    Article  CAS  Google Scholar 

  18. Tsong, T.Y. An acid induced conformational transition of denatured cytochrome c in urea and guanidine hydrochloride solutions. Biochemistry 14, 1542–1547 (1975).

    Article  CAS  Google Scholar 

  19. Hu, S., Morris, I.K., Singh, J.P., Smith, K.M. & Spiro, T.G. Complete assignment of cytochrome c resonance Raman spectra via enzymatic reconstitution with isotopically labeled hemes. J. Am. Chem. Soc. 115, 12446–12458 (1993).

    Article  CAS  Google Scholar 

  20. Jordan, T., Eads, J.C. & Spiro, T.G. Secondary and tertiary structure of the A-state of cytochrome c from resonance Raman spectroscopy. Protein Sci. 4, 716–728 (1995).

    Article  CAS  Google Scholar 

  21. Chan, C.-K. et al. Submillisecond protein folding kinetics studied by ultrarapid mixing. Proc. Ntal. Acad. Sci. USA, in the press.

  22. Peisach, J., Mims, W.B. & Davis, J.L. Water coordination by heme iron in metmyoglobin. J. Biol. Chem. 259, 2704–2706 (1984).

    CAS  PubMed  Google Scholar 

  23. Ikeda-Saito, M. et al. Coordination structure of the ferric heme iron in engineered distal histidine myoglobin mutants. J. Biol. Chem. 267, 22843–22852 (1992).

    CAS  PubMed  Google Scholar 

  24. Morikis, D., Champion, P.M., Springer, B.A., Egeberg, K.D. & Sliger, S.G. Raman studies of iron spin and axial coordination in distal pocket mutants of ferric myoglobin. J. Biol. Chem. 265, 12143–12145 (1990).

    CAS  PubMed  Google Scholar 

  25. Quillin, M.L., Arduini, R.M., Olson, J.S. & Phillips Jr., G.N. High resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J. Mol. Biol. 234, 140–155 (1993).

    Article  CAS  Google Scholar 

  26. Brancaccio, A. et al. Structural factors governing azide and cyanide binding to mammalian metmyoglobins. J. Biol. Chem. 269, 13843–13853 (1994).

    CAS  PubMed  Google Scholar 

  27. Wang, J.-S. & Van Wart, H.E. Resonance Raman characterization of the heme c group in N-acetyl-microperoxidase-8: a thermal intermediate spin-high spin state mixture. J. Phys. Chem. 93, 7925–7931 (1989).

    Article  CAS  Google Scholar 

  28. Yeh, S.-R., Takahashi, S., Fan, B. & Rousseau, D.L. Ligand exchange during cytochrome c folding. Nature Struct. Biol. 4, 51–56 (1997).

    Article  CAS  Google Scholar 

  29. Gottfried, D.S. et al. Evidence for damped hemoglobin dynamics in a room temperature trehalose glass. J. Phys. Chem. 100, 12034–12042 (1996).

    Article  CAS  Google Scholar 

  30. Das, T.K. & Mazumdar, S. Conformational substates of apoprotein of horseradish peroxidase in aqueous solution: a fluorescence dynamics study. J. Phys. Chem. 99, 13283–13290 (1995).

    Article  CAS  Google Scholar 

  31. Bushnell, G.W., Louie, G.V. & Brayer, G.D. High resolution three dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, S., Yeh, SR., Das, T. et al. Folding of cytochrome c initiated by submillisecond mixing. Nat Struct Mol Biol 4, 44–50 (1997). https://doi.org/10.1038/nsb0197-44

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0197-44

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing