Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Amino-acid substitutions in a surface turn modulate protein stability

A Corrigendum to this article was published on 01 December 1996

Abstract

A surface turn position in a four-helix bundle protein, Rop, was selected to investigate the role of turns in protein structure and stability. Although all twenty amino acids can be substituted at this position to generate a correctly folded protein, they produce an unusually large range of thermodynamic stabilities. Moreover, the majority of substitutions give rise to proteins with enhanced thermal stability compared to that of the wild type. By introducing the same twenty mutations at this position, but in a simplified context, we were able to deconvolute intrinsic preferences from local environmental effects. The intrinsic preferences can be explained on the basis of preferred backbone dihedral angles, but local environmental context can significantly modify these effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brunet, A.P. et al. The role of turns in the structure of an α-helical protein. Nature 364, 355–358 (1993).

    Article  CAS  Google Scholar 

  2. Castagnoli, L., Vetriani, C. & Cesareni, G. Linking an easily detectable phenotype to the folding of a common structural motif: Selection of rare turn mutations that prevent the folding of Rop. J. molec. Biol. 237, 378–387 (1994).

    Article  CAS  Google Scholar 

  3. Vlassi, M. et al. Restored heptad pattern continuity does not alter the folding of four-α-helix bundle. Nature struct. Biology 1, 706–716 (1994).

    Article  CAS  Google Scholar 

  4. Predki, P.F. & Regan, L. Redesigning the topology of a four-helix-bundle protein: Monomeric Rop. Biochemistry 34, 9834–9839 (1995).

    Article  CAS  Google Scholar 

  5. Wright, P.E., Dyson, J.H. & Lerner, R.A. Conformation of peptide fragments of proteins in aqueous solution: Implications for initiation of protein folding. Biochemistry 27, 7167–7175 (1988).

    Article  CAS  Google Scholar 

  6. Milburn, P.J., Konishi, Y., Meinwald, Y.C. & Scheraga, H.A. Chain Reversals in model peptides: Studies of cystine-containing cyclic peptides I. Conformational free energies of cyclization of hexapeptides of sequence. Ac-Cys-X-Pro-Gly-Y-Cys-NHMe J. Am. Chem. Soc 109, 4486–4496 (1987).

    Article  CAS  Google Scholar 

  7. Dyson, H.J., Ranee, M., Houghten, R.A., Lerner, R.A. & Wright, P.E. Folding of immunogenic peptide fragments of proteins in water solution I. Sequence requirements for the formation of a reverse turn. J. molec. Biol. 201, 161–200 (1988).

    Article  CAS  Google Scholar 

  8. Fasman, G.D. Prediction of protein structure and the principles of protein conformation (Plenum, New York, 1989).

    Book  Google Scholar 

  9. Muoz, V., Blanco, F.J. & Serrano, L. The hydrophobic-staple motif and a role for loop-residues in α-helix stability and protein folding. Nature struct Biology 2, 380–385 (1995).

    Article  Google Scholar 

  10. Banner, D.W., Kokkinidis, M. & Tsernoglou, D. Structure of the ColE1 Rop protein at 1.7 Å resolution. J. molec. Biol. 196, 657–675 (1987).

    Article  CAS  Google Scholar 

  11. Polisky, B. Col-E-1 replication control circuitry sense from antisense. Cell 55, 929–932 (1988).

    Article  CAS  Google Scholar 

  12. Predki, P.F., Nayak, L.M., Gottlieb, M.B.C. & Regan, L. Dissecting RNA-protein interactions: RNA-RNA recognition by Rop. Cell 80, 41–50 (1995).

    Article  CAS  Google Scholar 

  13. O-Neil, K.T. & DeGrado, W.F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science 250, 646–651 (1990).

    Article  CAS  Google Scholar 

  14. Horovitz, A., Matthews, J.M. & Fersht, A.R. α-helix stability in proteins II. Factors that influence stability at an internal position J molec. Biol. 227, 560–568 (1992).

    Article  CAS  Google Scholar 

  15. Blaber, M. et al. Determination of α-helix propensity within the context of a folded protein: Sites 44 and 131 in bacteriophage T4 lysozyme. J. molec. Biol. 235, 600–624 (1994).

    Article  CAS  Google Scholar 

  16. Kim, C.A. & Berg, J.M. Thermodynamic β-sheet propensities measured using a zinc-finger host peptide. Nature 362, 267–270 (1993).

    Article  CAS  Google Scholar 

  17. Minor, D.L. Jr. & Kim, P.S. Measurement of the β-sheet-forming propensities of amino acids. Nature 367, 660–663 (1994).

    Article  CAS  Google Scholar 

  18. Smith, C.K., Withka, J.M. & Regan, L. A thermodynamic scale for the β-sheet forming tendencies of the amino acids. Biochemistry 33, 5510–5517 (1994).

    Article  CAS  Google Scholar 

  19. Minor, D.L. Jr. & Kim, P.S. Context is a major determinant of β-sheet propensity. Nature 371, 264–267 (1994).

    Article  CAS  Google Scholar 

  20. Smith, C.K. & Regan, L. Guidelines for protein design: energetics of β-sheet side-chain interactions. Science 270, 980–982 (1995).

    Article  CAS  Google Scholar 

  21. Ramachandran, G.N. & Sasisekharan, V. Conformation of polypepties and proteins. Adv. Prot Chem. 23, 283–437 (1968).

    CAS  Google Scholar 

  22. Munoz, V., Serrano, L. Intrinsic secondary structure propensities of the amino acids, using statistical phi-psi matrices: Comparison with experimental scales. Proteins 20, 301–311 (1994).

    Article  CAS  Google Scholar 

  23. Munson, M., O'Brien, R., Sturtevant, J.M. & Regan, L. Redesigning the hydrophobic core of a four-helix-bundle protein. Prot. Sci. 3, 2015–2022 (1994).

    Article  CAS  Google Scholar 

  24. Vriend, G. WHAT IF: A molecular modelling and drug design package. J. molec. Graphics 8, 52–56 (1990).

    Article  CAS  Google Scholar 

  25. DeLano, W.L. & Brünger, AT. The direct rotation function: Rotational patterson correlation search applied to molecular replacement. Ada Crystallogr. D, in the press.

  26. Brünger, A.T. Extension of molecular replacement: A new search strategy based on patterson correlation refinement. Acta Crystallogr. A46, 46–57 (1990).

    Article  Google Scholar 

  27. Fuginaga, M. & Read, R.J. Experiences with a new translation-function program. J. appl. Crystallogr. 20, 517–521 (1987).

    Article  Google Scholar 

  28. Brünger, A.T. X-PLOR. Version 3.1 A System for X-ray crystallography and NMR. Yale University Press, New Haven, CT (1992).

  29. Hodel, A., Kim, S.-H. & Brnger, A.T. Model bias in macromolecular crystal structures. Acta Crystallogr. A48, 851–859 (1992).

    Article  CAS  Google Scholar 

  30. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A47, 110–119 (1991).

    Article  CAS  Google Scholar 

  31. Brünger, A.T., Krukowski, A. & Erickson, J. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A46, 585 (1990).

    Article  Google Scholar 

  32. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association. Insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 282–293 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Predki, P., Agrawal, V., Brünger, A. et al. Amino-acid substitutions in a surface turn modulate protein stability. Nat Struct Mol Biol 3, 54–58 (1996). https://doi.org/10.1038/nsb0196-54

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0196-54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing