Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate

Abstract

Many proteins populate partially organized structures during folding. Since these intermediates often accumulate within the dead time (2–5 ms) of conventional stopped-flow and quench-flow devices, it has been difficult to determine their role in the formation of the native state. Here we use a microcapillary mixing apparatus, with a time resolution of 150 μs, to directly follow the formation of an intermediate in the folding of a four-helix protein, Im7. Quantitative kinetic modeling of folding and unfolding data acquired over a wide range of urea concentrations demonstrate that this intermediate ensemble lies on a direct path from the unfolded to the native state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible three-state kinetic schemes for protein folding.
Figure 2: Fluorescence changes during the refolding of Im7.
Figure 3: On-pathway and off-pathway fits to Im7 folding kinetics.
Figure 4: Free energy diagram for Im7 folding/unfolding.

Similar content being viewed by others

References

  1. Khorasanizadeh, S., Peters, I.D. & Roder, H. Nature Struct. Biol. 3, 193–205 (1996).

    Article  CAS  Google Scholar 

  2. Parker, M.J., Dempsey, C.E., Lorch, M. & Clarke, A.R. Biochemistry 36, 13396–13405 (1997).

    Article  CAS  Google Scholar 

  3. Park, S.H., Oneil, K.T. & Roder, H. Biochemistry 36, 14277–14283 (1997).

    Article  CAS  Google Scholar 

  4. Ferguson, N., Capaldi, A.P., James, R., Kleanthous, C. & Radford, S.E. J. Mol. Biol. 286, 1597–1608 (1999).

    Article  CAS  Google Scholar 

  5. Baldwin, R.L. Fold. Des. 1, R1–R8 (1996).

    Article  CAS  Google Scholar 

  6. Sosnick, T.R., Shtilerman, M.D., Mayne, L. & Englander, S.W. Proc. Natl. Acad. Sci. USA 94, 8545–8550 (1997).

    Article  CAS  Google Scholar 

  7. Roder, H. & Colon, W. Curr. Opin. Struct. Biol. 7, 15–28 (1997).

    Article  CAS  Google Scholar 

  8. Jennings, P.A., Roy, M., Heidary, D. & Gross, L. Nature Struct. Biol. 5, 11 (1998).

    Article  CAS  Google Scholar 

  9. Hagen, S.J. & Eaton, W.A. J. Mol. Biol. 297, 781–789 (2000).

    Article  CAS  Google Scholar 

  10. Sosnick, T.R., Mayne, L., Hiller, R. & Englander, S.W. Nature Struct. Biol. 1, 149–156 (1994).

    Article  CAS  Google Scholar 

  11. Jackson, S.E. Fold. Des. 3, R81–R91 (1998).

    Article  CAS  Google Scholar 

  12. Wolynes, P.G., Onuchic, J.N. & Thirumalai, D. Science 267, 1619–1620 (1995).

    Article  CAS  Google Scholar 

  13. Mirny, L.A., Abkevich, V. & Shakhnovich, E.I. Fold. Des. 1, 103–116 (1996).

    Article  CAS  Google Scholar 

  14. Matouschek, A., Serrano, L. & Fersht, A.R. J. Mol. Biol. 224, 819–835 (1992).

    Article  CAS  Google Scholar 

  15. Raschke, T.M., Kho, J. & Marqusee, S. Nature Struct. Biol. 6, 825–831 (1999).

    Article  CAS  Google Scholar 

  16. Ikai, A. & Tanford, C. J. Mol. Biol. 73, 145–163 (1973).

    Article  CAS  Google Scholar 

  17. Shastry, M.C.R., Luck, S.D. & Roder, H. Biophys. J. 74, 2714–2721 (1998).

    Article  CAS  Google Scholar 

  18. Park, S.-H., Shastry, M.C.R. & Roder, H. Nature Struct. Biol. 6, 943–947 (1999).

    Article  CAS  Google Scholar 

  19. Shastry, M.C.R. & Roder, H. Nature Struct. Biol. 5, 385–392 (1998).

    Article  CAS  Google Scholar 

  20. Wallis, R. et al. Biochemistry 37, 476–485 (1998).

    Article  CAS  Google Scholar 

  21. Burton, R.E., Huang, G.S., Daugherty, M.A., Calderone, T.L. & Oas, T.G. Nature Struct. Biol. 4, 305–310 (1997).

    Article  CAS  Google Scholar 

  22. Dobson, C.M., Evans, P.A. & Radford, S.E. Trends Biochem. Sci. 19, 31–37 (1994).

    Article  CAS  Google Scholar 

  23. Wildegger, G. & Kiefhaber, T. J. Mol. Biol. 270, 294–304 (1997).

    Article  CAS  Google Scholar 

  24. Miranker, A., Robinson, C.V., Radford, S.E. & Dobson, C.M. FASEB J. 10, 93–101 (1996).

    Article  CAS  Google Scholar 

  25. Itzhaki, L.S., Evans, P.A., Dobson, C.M. & Radford, S.E. Biochemistry 33, 5212–5220 (1994).

    Article  CAS  Google Scholar 

  26. Qi, P.X., Sosnick, T.R. & Englander, S.W. Nature Struct. Biol. 5, 882–884 (1998).

    Article  CAS  Google Scholar 

  27. Parker, M.J. & Marqusee, S. J. Mol. Biol. 293, 1195–1210 (1999).

    Article  CAS  Google Scholar 

  28. Sabelko, J., Ervin, J. & Gruebele, M. Proc. Natl. Acad. Sci. USA 96, 6031–6036 (1999).

    Article  CAS  Google Scholar 

  29. Williams, S. et al. Biochemistry 35, 691–697 (1996).

    Article  CAS  Google Scholar 

  30. Thompson, P.A., Eaton, W.A. & Hofrichter, J. Biochemistry 36, 9200–9210 (1997).

    Article  CAS  Google Scholar 

  31. Muñoz, V., Thompson, P.A., Hofrichter, J. & Eaton, W.A. Nature 390, 196–199 (1997).

    Article  Google Scholar 

  32. Kiefhaber, T. Proc. Natl. Acad. Sci. USA 92, 9029–9033 (1995).

    Article  CAS  Google Scholar 

  33. Creighton, T.E., Darby, N.J. & Kemmink, J. FASEB J. 10, 110–118 (1996).

    Article  CAS  Google Scholar 

  34. Walkenhorst, W.F., Green, S.M. & Roder, H. Biochemistry 36, 5795–5805 (1997).

    Article  CAS  Google Scholar 

  35. Bai, Y. Proc. Natl. Acad. Sci. USA 96, 477–480 (1999).

    Article  CAS  Google Scholar 

  36. Creighton, T.E. Biochem. J. 270, 1–16 (1990).

    Article  CAS  Google Scholar 

  37. Heidary, D.K., Gross, L.A., Roy, M. & Jennings, P.A. Nature Struct. Biol. 4, 725–731 (1997).

    Article  CAS  Google Scholar 

  38. Bai, Y. Protein Sci. 9, 194–196 (2000).

    Article  CAS  Google Scholar 

  39. Elöve, G.A., Bhuyan, A.K. & Roder, H. Biochemistry 33, 6925–6935 (1994).

    Article  Google Scholar 

  40. Yeh, S.-R., Takahashi, S., Fan, B. & Rousseau, D.L. Nature Struct. Biol. 4, 51–56 (1997).

    Article  CAS  Google Scholar 

  41. Matagne, A. et al. J. Mol. Biol. 297, 193–210 (2000).

    Article  CAS  Google Scholar 

  42. Chan, C.K. et al. Proc. Natl. Acad. Sci. USA 94, 1779–1784 (1997).

    Article  CAS  Google Scholar 

  43. Wallis, R. et al. Eur. J. Biochem. 207, 687–695 (1992).

    Article  CAS  Google Scholar 

  44. Khorasanizadeh, S., Peters, I.D., Butt, T.R. & Roder, H. Biochemistry 32, 7054–7063 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the National Institutes of Health (H.R.) and the Biotechnology and Biological Sciences Research Council (BBSRC) (A.P.C. and S.E.R.). We also acknowledge with thanks support from the Wellcome Trust as well as helpful discussions with N. Kad, N. Ferguson and S. Gorski. The Astbury Centre for Structural Molecular Biology is part of the North of England Structural Biology Centre, which is funded by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinrich Roder or Sheena E. Radford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capaldi, A., Shastry, M., Kleanthous, C. et al. Ultrarapid mixing experiments reveal that Im7 folds via an on-pathway intermediate. Nat Struct Mol Biol 8, 68–72 (2001). https://doi.org/10.1038/83074

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing