Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism-based design of a protein kinase inhibitor

Abstract

Protein kinase inhibitors have applications as anticancer therapeutic agents and biological tools in cell signaling. Based on a phosphoryl transfer mechanism involving a dissociative transition state, a potent and selective bisubstrate inhibitor for the insulin receptor tyrosine kinase was synthesized by linking ATPγS to a peptide substrate analog via a two-carbon spacer. The compound was a high affinity competitive inhibitor against both nucleotide and peptide substrates and showed a slow off-rate. A crystal structure of this inhibitor bound to the tyrosine kinase domain of the insulin receptor confirmed the key design features inspired by a dissociative transition state, and revealed that the linker takes part in the octahedral coordination of an active site Mg2+. These studies suggest a general strategy for the development of selective protein kinase inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthetic compounds and mechanistic schemes.
Figure 2: Kinetic analysis of the inhibition of IRK by bisubstrate analog compound 2.
Figure 3: Crystal structure of the binary complex between cIRK and the bisubstrate inhibitor.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hunter, T. Cell 100, 113–127 ( 2000).

    Article  CAS  Google Scholar 

  2. Showalter, H.D. & Kraker, A.J. Pharmacol. Ther. 76, 55–71 ( 1997).

    Article  CAS  Google Scholar 

  3. Lawrence, D.S. & Niu, J. Pharmacol. Ther. 77, 81–114 (1998).

    Article  CAS  Google Scholar 

  4. G. Rosse, G. et al. Helvetica Chimica Acta 80, 653– 670 (1997).

    Article  Google Scholar 

  5. Yuan, C.J., Jakes, S., Elliott, S. & Graves, D. J. Biol. Chem. 265, 16205–16209 ( 1990).

    CAS  PubMed  Google Scholar 

  6. Ablooglu, A.J. et al. J. Biol. Chem. 275, 30394– 30398 (2000).

    Article  CAS  Google Scholar 

  7. Cushman, M. et al. Int. J. Pept. Protein Res. 36, 538– 543 (1990).

    Article  CAS  Google Scholar 

  8. Medzihradszky, D., Chen., S.L., Kenyon, G.L. & Gibson, B.W. J. Am. Chem. Soc. 116, 9413–9419 (1994).

    Article  CAS  Google Scholar 

  9. Silverman, R.B. The organic chemistry of drug design and drug action (Academic Press, New York; 1992).

    Google Scholar 

  10. Ho, M., Bramson, H.N., Hansen, D.E., Knowles, J.R. & Kaiser, E.T. J. Am. Chem. Soc. 110, 2680–2681 ( 1988).

    Article  CAS  Google Scholar 

  11. Uri, A., Raidaru, G., Jarv, J. & Pia, E. Bioorg. Med. Chem. Lett. 9, 1447–1452 ( 1999).

    Article  Google Scholar 

  12. Kim, K. & Cole, P.A. J. Am. Chem. Soc. 120 , 6851–6858 (1998).

    Article  CAS  Google Scholar 

  13. Admiraal, S.J. & Herschlag, D. J. Am. Chem. Soc. 122, 2145–2148 ( 2000).

    Article  CAS  Google Scholar 

  14. Mildvan, A.S. Proteins 29, 401–416 ( 1997).

    Article  CAS  Google Scholar 

  15. Hubbard, S.R. EMBO J. 16, 5572–5581 ( 1997).

    Article  CAS  Google Scholar 

  16. Brown, N.R., Noble, M.E.M., Endicott, J.A. & Johnson, L.N. Nature Cell Biol. 1, 438–443 (1999).

    Article  CAS  Google Scholar 

  17. Morrison, J.F. & Walsh, C.T. Adv. Enzymol. 61, 201–301 ( 1988).

    CAS  Google Scholar 

  18. Grace, M.R., Walsh, C.T. & Cole, P.A. Biochemistry 36, 1874– 1881 (1997).

    Article  CAS  Google Scholar 

  19. Sondhi, D., Xu, W., Songyang, Z., Eck, M.J. & Cole, P.A. Biochemistry 37, 165– 172 (1998).

    Article  CAS  Google Scholar 

  20. Taylor, S.S. & Radzio-Andzelm, E. Structure 2, 345–355 (1994).

    Article  CAS  Google Scholar 

  21. Knighton, D.R. et al. Science 253 414–420 (1991).

    Article  CAS  Google Scholar 

  22. Songyang, Z. et al., Nature 373, 536–539 (1995).

    Article  CAS  Google Scholar 

  23. Till, J.H., Annan, R.S., Carr, S.A. & Miller, W.T. J. Biol. Chem. 269, 7423–7428 ( 1994).

    CAS  PubMed  Google Scholar 

  24. Otwinowski, Z. & Minor, W. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  Google Scholar 

  25. Brünger, A. et al. Acta Crystallogr. D 54, 905– 921 (1998).

    Article  Google Scholar 

  26. Jones, T.A. Methods Enzymol. 115, 157–171 (1985).

    Article  CAS  Google Scholar 

  27. Shoelson, S.E., Chatterjee, S., Chandhuri, M. & White, M.F. Proc. Natl. Acad. Sci. USA 89, 2027– 2031 (1992).

    Article  CAS  Google Scholar 

  28. Nicholls, A., Sharp, K.A. & Honig, B. Proteins 11, 281– 296 (1991).

    Article  CAS  Google Scholar 

  29. Esnouf, R.M. J. Mol. Graph. 15, 132–134 (1997).

    Article  CAS  Google Scholar 

  30. Kraulis, P.J. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the NIH (to R.A.K., S.R.H. and P.A.C.), and the Burroughs Wellcome Fund. We thank A. Mildvan for helpful discussions and critical reading of the manuscript. X-ray equipment at The Skirball Institute is partially supported by grants from The Kresge Foundation and The Hyde and Watson Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stevan R. Hubbard or Philip A. Cole.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parang, K., Till, J., Ablooglu, A. et al. Mechanism-based design of a protein kinase inhibitor. Nat Struct Mol Biol 8, 37–41 (2001). https://doi.org/10.1038/83028

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/83028

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing