Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cellular plasticity and the neuroendocrine phenotype in prostate cancer

Key Points

  • Emerging experimental and clinical evidence posits that phenotypic plasticity — that is, the ability of cells to reversibly alter their lineage identity — drives resistance to next-generation androgen receptor (AR) pathway inhibitors

  • Following treatment with AR pathway inhibitors, 20–25% of patients with prostate cancer relapse with tumours that have shed their dependence on the AR and have neuroendocrine features; these cancers are termed neuroendocrine prostate cancer (NEPC)

  • Reprogramming to an NEPC state is linked to reactivation of developmental transcriptional programmes involving brain-specific homeobox/POU domain protein 2 (BRN2) and transcription factor SOX2, which endow prostate cancer cells with epithelial–mesenchymal plasticity and stem-like cell properties

  • NEPCs have few genomic aberrations, with the exception of MYCN amplification, TP53 mutation or deletion, and loss of RB1, suggesting that transdifferentiation is driven largely by epigenetic dysregulation and/or signals from the tumour microenvironment

  • Polycomb group protein-mediated epigenetic silencing is notably altered in NEPC, predominantly owing to overexpression of the epigenetic modifier enhancer of zeste homologue 2 (EZH2)

  • Epigenetic therapy, such as targeting EZH2, to block neuroendocrine differentiation and/or reverse the lineage switch and restore sensitivity to AR pathway inhibitors is a promising avenue to improve prostate cancer therapy

Abstract

The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial–mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emerging resistance mechanisms to next-generation androgen receptor pathway inhibitors.
Figure 2: Mechanisms of neuroendocrine differentiation in response to androgen receptor pathway inhibitors.
Figure 3: Key signalling nodes mediating cellular plasticity and neuroendocrine differentiation.
Figure 4: A progressive model of tumour cell lineage plasticity.

Similar content being viewed by others

References

  1. Nijhout, H. F. Development and evolution of adaptive polyphenisms. Evol. Dev. 5, 9–18 (2003).

    Article  PubMed  Google Scholar 

  2. Huggins, C. & Hodges, C. V. Studies on prostatic cancer. I. The effect of castration, of estrogen and androgen injection on serum phosphatases in metastatic carcinoma of the prostate. CA Cancer J. Clin. 22, 232–240 (1972).

    Article  CAS  Google Scholar 

  3. Knudsen, K. E. & Scher, H. I. Starving the addiction: new opportunities for durable suppression of AR signaling in prostate cancer. Clin. Cancer Res. 15, 4792–4798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tran, C. et al. Development of a second- generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin, J. et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 10, 556–569 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Epstein, J. I. et al. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 38, 756–767 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Beltran, H. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 1, 487–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao, J. L. et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am. J. Surg. Pathol. 30, 705–712 (2006).

    Article  PubMed  Google Scholar 

  13. Komiya, A. et al. Neuroendocrine differentiation in the progression of prostate cancer. Int. J. Urol. 16, 37–44 (2009).

    Article  PubMed  Google Scholar 

  14. Pienta, K. J. & Bradley, D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res. 12, 1665–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Visakorpi, T. et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat. Genet. 9, 401–406 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Beltran, H. et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Korpal, M. et al. An F876L mutation in androgen receptor confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer Discov. 3, 1030–1043 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guo, Z. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Arora, V. K. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 155, 1309–1322 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Isikbay, M. et al. Glucocorticoid receptor activity contributes to resistance to androgen-targeted therapy in prostate cancer. Hormones Cancer 5, 72–89 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Richard, G. et al. ZEB1-mediated melanoma cell plasticity enhances resistance to MAPK inhibitors. EMBO Mol. Med. 8, 1143–1161 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Small, E. J. et al. Clinical and genomic characterization of metastatic small cell/neuroendocrine prostate cancer (SCNC) and intermediate atypical prostate cancer (IAC): results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT) [abstract]. J. Clin. Oncol. 34, (Suppl.), 5019 (2016).

    Article  Google Scholar 

  25. Beltran, H. et al. Challenges in recognizing treatment-related neuroendocrine prostate cancer. J. Clin. Oncol. 30, e386–e389 (2012).

    Article  PubMed  Google Scholar 

  26. Mu, P. et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355, 84–88 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zou, M. et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration-resistant prostate cancer. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-16-1174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ku, S. Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 355, 78–83 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS  PubMed  Google Scholar 

  30. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Nieto, M. A. Epithelial plasticity: a common theme in embryonic and cancer cells. Science 342, 1234850 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Thiery, J. P., Acloque, H., Huang, R. Y. & Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Shook, D. & Keller, R. Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech. Dev. 120, 1351–1383 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Hay, E. D. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev. Dynam. 233, 706–720 (2005).

    Article  CAS  Google Scholar 

  35. Acloque, H., Adams, M. S., Fishwick, K., Bronner-Fraser, M. & Nieto, M. A. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Invest. 119, 1438–1449 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nieto, M. A. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu. Rev. Cell Dev. Biol. 27, 347–376 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Kalluri, R. & Weinberg, R. A. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graham, T. R. et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 68, 2479–2488 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, Q. et al. Nuclear factor-kappaB-mediated transforming growth factor-beta-induced expression of vimentin is an independent predictor of biochemical recurrence after radical prostatectomy. Clin. Cancer Res. 15, 3557–3567 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Umbas, R. et al. Expression of the cellular adhesion molecule E-cadherin is reduced or absent in high-grade prostate cancer. Cancer Res. 52, 5104–5109 (1992).

    CAS  PubMed  Google Scholar 

  42. Cheng, L., Nagabhushan, M., Pretlow, T. P., Amini, S. B. & Pretlow, T. G. Expression of E-cadherin in primary and metastatic prostate cancer. Am. J. Pathol. 148, 1375–1380 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Beltran, H. et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat. Med. 22, 298–305 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanaka, H. et al. Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nat. Med. 16, 1414–1420 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kong, D. et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 75, 161–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Cottard, F. et al. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PloS ONE 8, e63466 (2013).

    Article  CAS  Google Scholar 

  47. Sun, F. et al. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J. Biol. Chem. 289, 1529–1539 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Njar, V. C. & Brodie, A. M. Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. J. Med. Chem. 58, 2077–2087 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Kwegyir-Afful, A. K., Ramalingam, S., Purushottamachar, P., Ramamurthy, V. P. & Njar, V. C. Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 6, 27440–27460 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kwegyir-Afful, A. K., Bruno, R. D., Purushottamachar, P., Murigi, F. N. & Njar, V. C. Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. FEBS J. 283, 3898–3918 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02438007 (2017).

  52. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704–715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morel, A. P. et al. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS ONE 3, e2888 (2008).

    Article  CAS  Google Scholar 

  54. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Celia-Terrassa, T. et al. Epithelial-mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. J. Clin. Invest. 122, 1849–1868 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bae, K. M. et al. Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. J. Urol. 183, 2045–2053 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kong, D. et al. Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PloS ONE 5, e12445 (2010).

    Article  CAS  Google Scholar 

  58. Sun, Y. et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res. 72, 527–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Klarmann, G. J. et al. Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clin. Exp. Metastasis 26, 433–446 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mulholland, D. J. et al. Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Res. 72, 1878–1889 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ocana, O. H. et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell 22, 709–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Li, R. et al. A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7, 51–63 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Redmer, T. et al. E-Cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Rep. 12, 720–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Battula, V. L. et al. Epithelial-mesenchymal transition-derived cells exhibit multilineage differentiation potential similar to mesenchymal stem cells. Stem Cells 28, 1435–1445 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miyamoto, D. T. et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 349, 1351–1356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsai, J. H., Donaher, J. L., Murphy, D. A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vega, S. et al. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18, 1131–1143 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nouri, M. et al. Therapy-induced developmental reprogramming of prostate cancer cells and acquired therapy resistance. Oncotarget 8, 18949–18967 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee, S. O. et al. New therapy targeting differential androgen receptor signaling in prostate cancer stem/progenitor versus non-stem/progenitor cells. J. Mol. Cell Biol. 5, 14–26 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Germann, M. et al. Stem-like cells with luminal progenitor phenotype survive castration in human prostate cancer. Stem Cells 30, 1076–1086 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Seiler, D. et al. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines. Prostate 73, 1378–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Yuan, T. C. et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr. Relat. Cancer 13, 151–167 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Lipianskaya, J. et al. Androgen-deprivation therapy-induced aggressive prostate cancer with neuroendocrine differentiation. Asian J. Androl. 16, 541–544 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hirano, D., Okada, Y., Minei, S., Takimoto, Y. & Nemoto, N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur. Urol. 45, 586–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Zhang, D. et al. Stem cell and neurogenic gene-expression profiles link prostate basal cells to aggressive prostate cancer. Nat. Commun. 7, 10798 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Smith, B. A. et al. A basal stem cell signature identifies aggressive prostate cancer phenotypes. Proc. Natl Acad. Sci. USA 112, E6544–E6552 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. McKeithen, D., Graham, T., Chung, L. W. & Odero-Marah, V. Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 70, 982–992 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Akamatsu, S. et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep. 12, 922–936 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Dardenne, E. et al. N-Myc induces an EZH2-mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell 30, 563–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hargrave, M. et al. Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction. Dev. Dynam. 210, 79–86 (1997).

    Article  CAS  Google Scholar 

  81. Plisov, S. Y. et al. Mesenchymal-epithelial transition in the developing metanephric kidney: gene expression study by differential display. Genesis 27, 22–31 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Bishop, J. L., Thaper, D. & Zoubeidi, A. The multifaceted roles of STAT3 signaling in the progression of prostate cancer. Cancers 6, 829–859 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schroeder, A. et al. Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 74, 1227–1237 (2014).

    Article  CAS  PubMed  Google Scholar 

  84. Rojas, A. et al. IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene 30, 2345–2355 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Uysal-Onganer, P. et al. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells. Mol. Cancer 9, 55 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chang, P. C. et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PloS ONE 9, e88556 (2014).

    Article  CAS  Google Scholar 

  87. Shiota, M. et al. Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Res. 73, 3109–3119 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Nakashima, J. et al. Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin. Cancer Res. 6, 2702–2706 (2000).

    CAS  PubMed  Google Scholar 

  89. Rajan, P. et al. Next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy. Eur. Urol. 66, 32–39 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li, X. et al. Prostate tumor progression is mediated by a paracrine TGF-beta/Wnt3a signaling axis. Oncogene 27, 7118–7130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sun, Y. et al. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18, 1359–1368 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bisson, I. & Prowse, D. M. WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res. 19, 683–697 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Yu, X., Wang, Y., DeGraff, D. J., Wills, M. L. & Matusik, R. J. Wnt/beta-catenin activation promotes prostate tumor progression in a mouse model. Oncogene 30, 1868–1879 (2011).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, E. et al. Inhibition of androgen receptor and beta-catenin activity in prostate cancer. Proc. Natl Acad. Sci. USA 110, 15710–15715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hao, J., Li, T. G., Qi, X., Zhao, D. F. & Zhao, G. Q. WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 290, 81–91 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Carstens, J. L. et al. FGFR1-WNT-TGF-beta signaling in prostate cancer mouse models recapitulates human reactive stroma. Cancer Res. 74, 609–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Gujral, T. S. et al. A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159, 844–856 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    Article  CAS  PubMed  Google Scholar 

  99. Shang, Z. et al. A switch from CD44(+) cell to EMT cell drives the metastasis of prostate cancer. Oncotarget 6, 1202–1216 (2015).

    PubMed  Google Scholar 

  100. Marin-Aguilera, M. et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol. Cancer Ther. 13, 1270–1284 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Deep, G. et al. SNAI1 is critical for the aggressiveness of prostate cancer cells with low E-cadherin. Mol. Cancer 13, 37 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Palapattu, G. S. et al. Selective expression of CD44, a putative prostate cancer stem cell marker, in neuroendocrine tumor cells of human prostate cancer. Prostate 69, 787–798 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Salvatori, L. et al. Cell-to-cell signaling influences the fate of prostate cancer stem cells and their potential to generate more aggressive tumors. PloS ONE 7, e31467 (2012).

    Article  CAS  Google Scholar 

  104. Sotomayor, P., Godoy, A., Smith, G. J. & Huss, W. J. Oct4A is expressed by a subpopulation of prostate neuroendocrine cells. Prostate 69, 401–410 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Beltran, H. et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin. Cancer Res. 22, 1510–1519 (2016).

    Article  CAS  PubMed  Google Scholar 

  106. Tan, H. L. et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin. Cancer Res. 20, 890–903 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Varlakhanova, N. V. et al. myc maintains embryonic stem cell pluripotency and self-renewal. Differentiation 80, 9–19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wey, A. & Knoepfler, P. S. c-Myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. Oncotarget 1, 120–130 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Lee, J. K. et al. N-Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell 29, 536–547 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhou, Z. et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 66, 7889–7898 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Greenberg, N. M. et al. Prostate cancer in a transgenic mouse. Proc. Natl Acad. Sci. USA 92, 3439–3443 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Masumori, N. et al. A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res. 61, 2239–2249 (2001).

    CAS  PubMed  Google Scholar 

  114. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sarkar, A. & Hochedlinger, K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell 12, 15–30 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ferone, G. et al. SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell 30, 519–532 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Murai, F. et al. EZH2 promotes progression of small cell lung cancer by suppressing the TGF-beta-Smad-ASCL1 pathway. Cell Discov. 1, 15026 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lin, D. et al. High fidelity patient-derived xenografts for accelerating prostate cancer discovery and drug development. Cancer Res. 74, 1272–1283 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Kim, K. H. & Roberts, C. W. Targeting EZH2 in cancer. Nat. Med. 22, 128–134 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Varambally, S. et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Clermont, P. L. et al. Polycomb-mediated silencing in neuroendocrine prostate cancer. Clin. Epigenet. 7, 40 (2015).

    Article  CAS  Google Scholar 

  122. Lapuk, A. V. et al. From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 286–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Svensson, C. et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res. 42, 999–1015 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Schoenherr, C. J. & Anderson, D. J. The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes. Science 267, 1360–1363 (1995).

    Article  CAS  PubMed  Google Scholar 

  125. Ballas, N., Grunseich, C., Lu, D. D., Speh, J. C. & Mandel, G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121, 645–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Li, Y. et al. SRRM4 drives neuroendocrine transdifferentiation of prostate adenocarcinoma under androgen receptor pathway inhibition. Eur. Urol. 71, 68–78 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Raj, B. et al. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol. Cell 56, 90–103 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, X. et al. SRRM4 expression and the loss of REST activity may promote the emergence of the neuroendocrine phenotype in castration-resistant prostate cancer. Clin. Cancer Res. 21, 4698–4708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bishop, J. L. et al. The master neural transcription factor BRN2 is an androgen receptor-suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 7, 54–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  130. Ishii, J. et al. POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer. Pathol. Int. 63, 158–168 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Sakaeda, M. et al. Neural lineage-specific homeoprotein BRN2 is directly involved in TTF1 expression in small-cell lung cancer. Lab. Invest. 93, 408–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Tian, C. et al. Selective generation of dopaminergic precursors from mouse fibroblasts by direct lineage conversion. Sci. Rep. 5, 12622 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Domanskyi, A., Alter, H., Vogt, M. A., Gass, P. & Vinnikov, I. A. Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. Front. Cell. Neurosci. 8, 275 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Chiaverotti, T. et al. Dissociation of epithelial and neuroendocrine carcinoma lineages in the transgenic adenocarcinoma of mouse prostate model of prostate cancer. Am. J. Pathol. 172, 236–246 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Mirosevich, J. et al. Expression and role of Foxa proteins in prostate cancer. Prostate 66, 1013–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Qi, J. et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 18, 23–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chen, W. J. et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat. Commun. 5, 3472 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Olumi, A. F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002–5011 (1999).

    CAS  PubMed  Google Scholar 

  139. Lu, T. et al. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development. Mol. Endocrinol. 26, 1707–1715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Lau, E. Y. et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-Met/FRA1/HEY1 signaling. Cell Rep. 15, 1175–1189 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Ma, Y. et al. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. PloS ONE 6, e29170 (2011).

    Article  CAS  Google Scholar 

  142. Tan, Y. et al. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5, 4619 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Doldi, V. et al. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget 6, 31441–31460 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Lee, G. T. et al. Macrophages induce neuroendocrine differentiation of prostate cancer cells via BMP6-IL6 Loop. Prostate 71, 1525–1537 (2011).

    CAS  PubMed  Google Scholar 

  145. Li, M. et al. Hypoxia inducible factor-1alpha-dependent epithelial to mesenchymal transition under hypoxic conditions in prostate cancer cells. Oncol. Rep. 36, 521–527 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Smith, P. C. & Keller, E. T. Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48, 47–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  147. Wallner, L. et al. Inhibition of interleukin-6 with CNTO328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res. 66, 3087–3095 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Dorff, T. B. et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin. Cancer Res. 16, 3028–3034 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00433446 (2013).

  150. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00401765 (2014).

  151. Hudes, G. et al. A phase 1 study of a chimeric monoclonal antibody against interleukin-6, siltuximab, combined with docetaxel in patients with metastatic castration-resistant prostate cancer. Invest. Drugs 31, 669–676 (2013).

    Article  CAS  Google Scholar 

  152. Tang, Y. et al. Lycopene enhances docetaxel's effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia 13, 108–119 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT01949519 (2018).

  154. van den Hoogen, C. et al. High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res. 70, 5163–5173 (2010).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, P. et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer 109, 1876–1885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Nechushtan, H. et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist 20, 366–367 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Liu, X. et al. Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget 7, 58516–58530 (2016).

    PubMed  PubMed Central  Google Scholar 

  158. Triscott, J. et al. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget 3, 1112–1123 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ketola, K., Kallioniemi, O. & Iljin, K. Chemical biology drug sensitivity screen identifies sunitinib as synergistic agent with disulfiram in prostate cancer cells. PloS ONE 7, e51470 (2012).

    Article  CAS  Google Scholar 

  160. Safi, R. et al. Copper signaling axis as a target for prostate cancer therapeutics. Cancer Res. 74, 5819–5831 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02963051 (2017).

  162. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    Article  CAS  PubMed  Google Scholar 

  163. Meulenbeld, H. J. et al. Randomized phase II study of danusertib in patients with metastatic castration-resistant prostate cancer after docetaxel failure. BJU Int. 111, 44–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00766324 (2014).

  165. Richards, M. W. et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl Acad. Sci. USA 113, 13726–13731 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Gustafson, W. C. et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26, 414–427 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/study/NCT01799278 (2017).

  168. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Wyce, A. et al. Inhibition of BET bromodomain proteins as a therapeutic approach in prostate cancer. Oncotarget 4, 2419–2429 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Asangani, I. A. et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510, 278–282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rickman, D. S., Beltran, H., Demichelis, F. & Rubin, M. A. Biology and evolution of poorly differentiated neuroendocrine tumors. Nat. Med. 23, 1–10 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Rudin, C. M. et al. Safety and efficacy of single-agent rovalpituzumab tesirine (SC16LD6.5), a delta-like protein 3 (DLL3)-targeted antibody-drug conjugate (ADC) in recurrent or refractory small cell lung cancer (SCLC) [abstract]. J. Clin. Oncol. 34 (Suppl.), LBA8505 (2016).

    Article  Google Scholar 

  173. Puca, L. et al. Rovalpituzumab tesirine (Rova-T) as a therapeutic agent for Neuroendocrine Prostate Cancer (NEPC) [abstract]. J. Clin. Oncol. 35 (Suppl.), 5029 (2017).

    Article  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02709889 (2017).

  175. Antonia, S. J. et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 17, 883–895 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Graff, J. N. et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 7, 52810–52817 (2016).

    PubMed  PubMed Central  Google Scholar 

  177. Warrell, R. P. Jr. et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med. 324, 1385–1393 (1991).

    Article  PubMed  Google Scholar 

  178. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02395601 (2016).

  179. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02875548 (2018).

  180. Mantovani, F., Walerych, D. & Sal, G. D. Targeting mutant p53 in cancer: a long road to precision therapy. FEBS J. 284, 837–850 (2017).

    Article  CAS  PubMed  Google Scholar 

  181. Lee, T. I. et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Helpap, B., Kollermann, J. & Oehler, U. Neuroendocrine differentiation in prostatic carcinomas: histogenesis, biology, clinical relevance, and future therapeutical perspectives. Urol. Intern. 62, 133–138 (1999).

    Article  CAS  Google Scholar 

  183. Nadal, R., Schweizer, M., Kryvenko, O. N., Epstein, J. I. & Eisenberger, M. A. Small cell carcinoma of the prostate. Nat. Rev. Urol. 11, 213–219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Aparicio, A., Logothetis, C. J. & Maity, S. N. Understanding the lethal variant of prostate cancer: power of examining extremes. Cancer Discov. 1, 466–468 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Wang, W. & Epstein, J. I. Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. Am. J. Surg. Pathol. 32, 65–71 (2008).

    Article  PubMed  Google Scholar 

  186. Beltran, H. et al. Aggressive variants of castration-resistant prostate cancer. Clin. Cancer Res. 20, 2846–2850 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Guo, C. C. et al. TMPRSS2-ERG gene fusion in small cell carcinoma of the prostate. Hum. Pathol. 42, 11–17 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Wang, H. T. et al. Neuroendocrine Prostate Cancer (NEPC) progressing from conventional prostatic adenocarcinoma: factors associated with time to development of NEPC and survival from NEPC diagnosis-a systematic review and pooled analysis. J. Clin. Oncol. 32, 3383–3390 (2014).

    Article  PubMed  Google Scholar 

  189. Aparicio, A. M. et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin. Cancer Res. 19, 3621–3630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Lotan, T. L. et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Modern Pathol. 24, 820–828 (2011).

    Article  CAS  Google Scholar 

  191. Russo, M. V. et al. SOX2 boosts major tumor progression genes in prostate cancer and is a functional biomarker of lymph node metastasis. Oncotarget 7, 12372–12385 (2016).

    PubMed  Google Scholar 

  192. Clarke, M. F. et al. Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).

    Article  CAS  PubMed  Google Scholar 

  193. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  194. Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  195. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  196. Collins, A. T., Habib, F. K., Maitland, N. J. & Neal, D. E. Identification and isolation of human prostate epithelial stem cells based on alpha(2)beta(1)-integrin expression. J. Cell Sci. 114, 3865–3872 (2001).

    CAS  PubMed  Google Scholar 

  197. Davies, A. H. & Zoubeidi, A. The androgen receptor bridges stem cell-associated signaling nodes in prostate stem cells. Stem Cells Int. 2016, 4829602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Maitland, N. J., Frame, F. M., Polson, E. S., Lewis, J. L. & Collins, A. T. Prostate cancer stem cells: do they have a basal or luminal phenotype? Hormones Cancer 2, 47–61 (2011).

    Article  PubMed  Google Scholar 

  199. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. USA 108, 7950–7955 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Flavahan, W. A. et al. Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake. Nat. Neurosci. 16, 1373–1382 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bluemn, E. G. et al. Androgen receptor pathway-independent prostate cancer is sustained through FGF signaling. Cancer Cell 32, 474–489.6 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Don-Doncow, N. et al. Galiellalactone is a direct inhibitor of the transcription factor STAT3 in prostate cancer cells. J. Biol. Chem. 289, 15969–15978 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hellsten, R., Johansson, M., Dahlman, A., Sterner, O. & Bjartell, A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PloS ONE 6, e22118 (2011).

    Article  CAS  Google Scholar 

  205. Attwell, S. et al. Preclinical characterization of ZEN-3694, a novel BET bromodomain inhibitor entering phase I studies for metastatic castration-resistant prostate cancer (mCRPC) [abstract]. Cancer Res. 76 (Suppl.), LB-207 (2016).

    Google Scholar 

  206. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02711956 (2017).

  207. Antonarakis, E. S., Armstrong, A. J., Dehm, S. M. & Luo, J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostat. Dis. 19, 231–241 (2016).

    Article  CAS  Google Scholar 

  208. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02607228 (2018).

  209. Yap, T. A. et al. A phase I, open-label study of GSK2816126, an enhancer of zeste homolog 2 (EZH2) inhibitor, in patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL), transformed follicular lymphoma (tFL), other non-Hodgkin's lymphomas (NHL), multiple myeloma (MM) and solid tumor. J. Clin. Oncol. 34 (Suppl.), TPS2595 (2016).

    Article  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02082977 (2017).

  211. Knutson, S. K. et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol. Cancer Ther. 13, 842–854 (2014).

    Article  CAS  PubMed  Google Scholar 

  212. Vaswani, R. G. et al. Identification of (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1 -(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. J. Med. Chem. 59, 9928–9941 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Constellation Pharmaceuticals. Constellation pharmaceuticals announces first patient dosed in phase 1b/2 PROSTAR combination study of CPI-1205 in advanced form of prostate cancer. Constellation Pharmaceuicals https://www.constellationpharma.com/constellation-pharmaceuticals-announces-first-patient-dosed-phase-1b-2-prostar-combination-study-cpi-1205-advanced-form-prostate-cancer/ (2017).

Download references

Acknowledgements

A.H.D. is supported by a Prostate Cancer Foundation (PCF) Young Investigator Award, in addition to the Canadian Institutes of Health Research. H.B. is supported by the US Department of Defense, Damon Runyon Cancer Research Foundation, and PCF. Work in the laboratory of A.Z. is supported by funds from a PCF Challenge Award, Prostate Cancer Canada (grant T2013-01), and the Terry Fox Research Institute (grant F15-05505).

Author information

Authors and Affiliations

Authors

Contributions

A.H.D. researched data for the article and wrote the manuscript. A.H.D, H.B., and A.Z. made substantial contributions to discussion of the article content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Amina Zoubeidi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, A., Beltran, H. & Zoubeidi, A. Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nat Rev Urol 15, 271–286 (2018). https://doi.org/10.1038/nrurol.2018.22

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2018.22

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer