Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Risk factors for cryptorchidism

Key Points

  • Cryptorchidism (undescended testes) is one of the most common congenital abnormalities observed in boys, and is one of the few known risk factors for testicular cancer

  • The key factors associated with the occurrence of cryptorchidism remain elusive

  • Few factors are supported by consistent evidence of an association with cryptorchidism despite a considerable body of aetiological research

  • For factors for which evidence seems unequivocal, the measured factor is likely to be a surrogate for the true causal factor

  • The relative importance of each risk factor could vary considerably between mother–son pairs depending on an array of genetic, maternal, placental and fetal factors, which could vary between regions

Abstract

Undescended testis — known as cryptorchidism — is one of the most common congenital abnormalities observed in boys, and is one of the few known risk factors for testicular cancer. The key factors that contribute to the occurrence of cryptorchidism remain elusive. Testicular descent is thought to occur during two hormonally-controlled phases in fetal development — between 8–15 weeks (the first phase of decent) and 25–35 weeks gestation (the second phase of descent); the failure of a testis to descend permanently is probably caused by disruptions to one or both of these phases, but the causes and mechanisms of such disruptions are still unclear. A broad range of putative risk factors have been evaluated in relation to the development of cryptorchidism but their plausibility is still in question. Consistent evidence of an association with cryptorchidism exists for only a few factors, and in those cases in which evidence seems unequivocal the factor is likely to be a surrogate for the true causal exposure. The relative importance of each risk factor could vary considerably between mother–son pairs depending on an array of genetic, maternal, placental and fetal factors — all of which could vary between regions. Thus, the role of causative factors in aetiology of cryptorchidism requires further research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Descent of the testis in humans.

Similar content being viewed by others

Michael L. Eisenberg, Sandro C. Esteves, … Yu-Sheng Cheng

References

  1. Ansell, P. E. et al. Cryptorchidism: a prospective study of 7500 consecutive male births, 1984–1988. Arch. Dis. Child. 67, 892–899 (1992).

    Article  Google Scholar 

  2. Abdullah, N. A. et al. Birth prevalence of cryptorchidism and hypospadias in northern England, 1993–2000. Arch. Dis. Child. 92, 576–579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berkowitz, G. S. et al. Prevalence and natural history of cryptorchidism. Pediatrics 92, 44–49 (1993).

    CAS  PubMed  Google Scholar 

  4. Pierik, F. H. et al. The cryptorchidism prevalence among infants in the general population of Rotterdam, the Netherlands. Int. J. Androl. 28, 248–252 (2005).

    Article  PubMed  Google Scholar 

  5. Preikša, R. T. et al. Higher than expected prevalence of congenital cryptorchidism in Lithuania: a study of 1204 boys at birth and 1 year follow-up. Hum. Reprod. 20, 1928–1932 (2005).

    Article  PubMed  Google Scholar 

  6. Wagner-Mahler, K. et al. Prospective study on the prevalence and associated risk factors of cryptorchidism in 6246 newborn boys from Nice area, France. Int. J. Androl. 34, e499–e510 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Boisen, K. A. et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet 363, 1264–1269 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Ghirri, P. et al. Incidence at birth and natural history of cryptorchidism: a study of 10,730 consecutive male infants. J. Endocrinol. Invest. 25, 709–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Barthold, J. S. & Gonzalez, R. The epidemiology of congenital cryptorchidism, testicular ascent and orchiopexy. J. Urol. 170, 2396–2401 (2003).

    Article  PubMed  Google Scholar 

  10. Jensen, M. S. et al. Cryptorchidism and hypospadias in a cohort of 934,538 danish boys: the role of birth weight, gestational age, body dimensions, and fetal growth. Am. J. Epidemiol. 175, 917–925 (2012).

    Article  PubMed  Google Scholar 

  11. Jensen, M. S. et al. Age at cryptorchidism diagnosis and orchiopexy in Denmark: a population based study of 508,964 boys born from 1995 to 2009. J. Urol. 186, 1595–1600 (2011).

    Article  PubMed  Google Scholar 

  12. Wohlfahrt-Veje, C. et al. Acquired cryptorchidism is frequent in infancy and childhood. Int. J. Androl. 32, 423–428 (2009).

    Article  PubMed  Google Scholar 

  13. Hutson, J., Li, R., Southwell, B., Newgreen, D. & Cousinery, M. Regulation of testicular descent. Pediatr. Surg. Int. 31, 317–325 (2015).

    Article  PubMed  Google Scholar 

  14. Jensen, M. S. et al. Maternal use of acetaminophen, ibuprofen, and acetylsalicylic acid during pregnancy and risk of cryptorchidism. Epidemiology 21, 779–785 (2010).

    Article  PubMed  Google Scholar 

  15. Toppari, J., Kaleva, M. & Virtanen, H. E. Trends in the incidence of cryptorchidism and hypospadias, and methodological limitations of registry-based data. Hum. Reprod. Update 7, 282–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chilvers, C., Forman, D., Pike, M. C., Fogelman, K. & Wadsworth, M. E. J. Apparent doubling of frequency of undescended testis in england and wales in 1962–1981. Lancet 324, 330–332 (1984).

    Article  Google Scholar 

  17. Bonney, T., Southwell, B., Donnath, S., Newgreen, D. & Hutson, J. Orchidopexy trends in the paediatric population of Victoria, 1999–2006. J. Pediatr. Surg. 44, 427–431 (2009).

    Article  PubMed  Google Scholar 

  18. Capello, S. A., Giorgi, L. J. Jr & Kogan, B. A. Orchiopexy practice patterns in New York State from 1984 to 2002. J. Urol. 176, 1180–1183 (2006).

    Article  PubMed  Google Scholar 

  19. Richiardi, L., Vizzini, L., Nordenskjold, A., Pettersson, A. & Akre, O. Rates of orchiopexies in Sweden: 1977–1991. Int. J. Androl. 32, 473–478 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Kollin, C., Karpe, B., Hesser, U., Granholm, T. & Ritzén, E. M. Surgical treatment of unilaterally undescended testes: testicular growth after randomization to orchiopexy at age 9 months or 3 years. J. Urol. 178, 1589–1593 (2007).

    Article  PubMed  Google Scholar 

  21. Kolon, T. F. et al. Evaluation and treatment of cryptorchidism: AUA guideline. J. Urol. 192, 337–345 (2014).

    Article  PubMed  Google Scholar 

  22. Martin Ritzén, E. Undescended testes: a consensus on management. Eur. J. Endocrinol. 159, S87–S90 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Pettersson, A., Richiardi, L., Nordenskjold, A., Kaijser, M. & Akre, O. Age at surgery for undescended testis and risk of testicular cancer. N. Engl. J. Med. 356, 1835–1841 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Wood, H. M. & Elder, J. S. Cryptorchidism and testicular cancer: separating fact from fiction. J. Urol. 181, 452–461 (2009).

    Article  PubMed  Google Scholar 

  25. Dieckmann, K. P. & Pichlmeier, U. Clinical epidemiology of testicular germ cell tumors. World J. Urol. 22, 2–14 (2004).

    Article  PubMed  Google Scholar 

  26. Lip, S. Z. L., Murchison, L. E. D., Cullis, P. S., Govan, L. & Carachi, R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch. Dis. Child. 98, 20–26 (2013).

    Article  PubMed  Google Scholar 

  27. Cook, M. B. et al. A systematic review and meta-analysis of perinatal variables in relation to the risk of testicular cancer — experiences of the son. Int. J. Epidemiol. 39, 1605–1618 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kanto, S. et al. Risk factors in past histories and familial episodes related to development of testicular germ cell tumor. Int. J. Urol. 11, 640–646 (2004).

    Article  PubMed  Google Scholar 

  29. Prener, A., Engholm, G. & Jensen, O. M. Genital anomalies and risk for testicular cancer in Danish men. Epidemiology 7, 14–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Akre, O., Pettersson, A. & Richiardi, L. Risk of contralateral testicular cancer among men with unilaterally undescended testis: a meta analysis. Int. J. Cancer 124, 687–689 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Pottern, L. M. et al. Testicular cancer risk among young men: role of cryptorchidism and inguinal hernia. J. Natl Cancer Inst. 74, 377–381 (1985).

    CAS  PubMed  Google Scholar 

  32. Hutson, J. M., Hasthorpe, S. & Heyns, C. F. Anatomical and functional aspects of testicular descent and cryptorchidism. Endocr. Rev. 18, 259–280 (1997).

    CAS  PubMed  Google Scholar 

  33. Lee, P. A. et al. Paternity after unilateral cryptorchidism: a controlled study. Pediatrics 98, 676–679 (1996).

    CAS  PubMed  Google Scholar 

  34. Skakkebæk, N. E., Rajpert-De Meyts, E. & Main, K. M. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum. Reprod. 16, 972–978 (2001).

    Article  PubMed  Google Scholar 

  35. Nordenvall, A. S., Frisén, L., Nordenström, A., Lichtenstein, P. & Nordenskjöld, A. Population based nationwide study of hypospadias in Sweden, 1973 to 2009: incidence and risk factors. J. Urol. 191, 783–789 (2014).

    Article  PubMed  Google Scholar 

  36. Hutson, J. M., Thorup, J. M. & Beasley, S. W. Descent of the Testis 2nd edn (Springer, 2016).

    Book  Google Scholar 

  37. Abeyaratne, M. R., Aherne, W. A. & Scott, J. E. The vanishing testis. Lancet 2, 822–824 (1969).

    Article  CAS  PubMed  Google Scholar 

  38. Akre, O., Lipworth, L., Cnattingius, S., Sparén, P. & Ekbom, A. Risk factor patterns for cryptorchidism and hypospadias. Epidemiology 10, 364–369 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Bernstein, L. et al. Maternal hormone levels in early gestation of cryptorchid males: a case-control study. Br. J. Cancer 58, 379–381 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGlynn, K. A. et al. Maternal hormone levels and risk of cryptorchism among populations at high and low risk of testicular germ cell tumors. Cancer Epidemiol. Biomarkers Prev. 14, 1732–1737 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Burton, M. H., Davies, T. W. & Raggatt, P. R. Undescended testis and hormone levels in early pregnancy. J. Epidemiol. Community Health 41, 127–129 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Key, T. J. A. et al. A case-control study of cryptorchidism and maternal hormone concentrations in early pregnancy. Br. J. Cancer 73, 698–701 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Davies, T. W., Williams, D. R. R. & Whitaker, A. H. Risk factors for undescended testis. Int. J. Epidemiol. 15, 197–201 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Beard, C. M., Melton, L. J., O'Fallon, W. M., Noller, K. L. & Benson, R. C. Cryptorchism and maternal estrogen exposure. Am. J. Epidemiol. 120, 707–716 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. Jones, M. E., Swerdlow, A. J., Griffith, M. & Goldacre, M. J. Prenatal risk factors for cryptorchidism: a record linkage study. Paediatr. Perinat. Epidemiol. 12, 383–396 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Boyd, H. A. et al. Maternal serum alpha-fetoprotein level during pregnancy and isolated cryptorchidism in male offspring. Am. J. Epidemiol. 164, 478–486 (2006).

    Article  PubMed  Google Scholar 

  47. Chedane, C., Puissant, H., Weil, D., Rouleau, S. & Coutant, R. Association between altered placental human chorionic gonadotrophin (hCG) production and the occurrence of cryptorchidism: a retrospective study. BMC Pediatr. 14, 191 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fénichel, P. et al. Cord blood insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin. Endocrinol. 82, 242–247 (2015).

    Article  CAS  Google Scholar 

  49. Chevalier, N. et al. A negative correlation between insulin-like peptide 3 and bisphenol A in human cord blood suggests an effect of endocrine disruptors on testicular descent during fetal development. Hum. Reprod. 30, 447–453 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Sharpe, R. M. & Skakkebaek, N. E. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341, 1392–1396 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Mizuno, K. et al. Altered expression and localization of estrogen receptors alpha and beta in the testes of a cryptorchid rat model. Urology 77, 251.e1–251.e6 (2011).

    Article  Google Scholar 

  52. Mizuno, K. et al. Influence for testicular development and histological peculiarity in the testes of flutamide-induced cryptorchid rat model. Int. J. Urol. 14, 67–72 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Van der Schoot, P. Disturbed testicular descent in the rat after prenatal exposure to the antiandrogen flutamide. J. Reprod. Fertil. 96, 483–496 (1992).

    Article  CAS  PubMed  Google Scholar 

  54. Scott, H. M., Mason, J. I. & Sharpe, R. M. Steroidogenesis in the fetal testis and its susceptibility to disruption by exogenous compounds. Endocr. Rev. 30, 883–925 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Zimmermann, S. et al. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol. Endocrinol. 13, 681–691 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Bay, K. & Andersson, A. M. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. Int. J. Androl. 34, 97–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Toft, G. et al. Perfluorooctane sulfonate concentrations in amniotic fluid, biomarkers of fetal leydig cell function, and cryptorchidism and hypospadias in Danish boys (1980–1996). Environ. Health Perspect. 124, 151–156 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Klemetti, R. et al. Children born after assisted fertilization have an increased rate of major congenital anomalies. Fertil. Steril. 84, 1300–1307 (2005).

    Article  PubMed  Google Scholar 

  59. Pinborg, A., Henningsen, A. K. A., Malchau, S. S. & Loft, A. Congenital anomalies after assisted reproductive technology. Fertil. Steril. 99, 327–332 (2013).

    Article  PubMed  Google Scholar 

  60. Funke, S. et al. Male reproductive tract abnormalities: more common after assisted reproduction? Early Hum. Dev. 86, 547–550 (2010).

    Article  PubMed  Google Scholar 

  61. Bang, J. K. et al. Does infertility treatment increase male reproductive tract disorder? Urology 81, 644–648 (2013).

    Article  PubMed  Google Scholar 

  62. Fedder, J., Loft, A., Parner, E. T., Rasmussen, S. & Pinborg, A. Neonatal outcome and congenital malformations in children born after ICSI with testicular or epididymal sperm: a controlled national cohort study. Hum. Reprod. 28, 230–240 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kermani, R. M. et al. Congenital anomalies in infants conceived by assisted reproductive techniques. Arch. Iran. Med. 15, 228–231 (2012).

    Google Scholar 

  64. Yan, J. et al. Birth defects after assisted reproductive technologies in China: analysis of 15,405 offspring in seven centers (2004 to 2008). Fertil. Steril. 95, 458–460 (2011).

    Article  PubMed  Google Scholar 

  65. Damgaard, I. N. et al. Risk factors for congenital cryptorchidism in a prospective birth cohort study. PLoS ONE 3, e3051 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hansen, M., Kurinczuk, J. J., De Klerk, N., Burton, P. & Bower, C. Assisted reproductive technology and major birth defects in Western Australia. Obstet. Gynecol. 120, 852–863 (2012).

    Article  PubMed  Google Scholar 

  67. Halliday, J. L. et al. Increased risk of blastogenesis birth defects, arising in the first 4 weeks of pregnancy, after assisted reproductive technologies. Hum. Reprod. 25, 59–65 (2010).

    Article  PubMed  Google Scholar 

  68. Zhu, J. L., Basso, O., Obel, C., Bille, C. & Olsen, J. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ 333, 679–681 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Massaro, P. A., Maclellan, D. L., Anderson, P. A. & Romao, R. L. P. Does intracytoplasmic sperm injection pose an increased risk of genitourinary congenital malformations in offspring compared to in vitro fertilization? A systematic review and meta-analysis. J. Urol. 193, 1837–1842 (2015).

    Article  PubMed  Google Scholar 

  70. Simpson, J. L. Birth defects and assisted reproductive technologies. Semin. Fetal Neonatal Med. 19, 177–182 (2014).

    Article  PubMed  Google Scholar 

  71. Källén, B., Finnström, O., Nygren, K. G. & Olausson, P. O. In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res. A Clin. Mol. Teratol. 73, 162–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Pierik, F. H., Burdorf, A., Deddens, J. A., Juttmann, R. E. & Weber, R. F. A. Maternal and paternal risk factors for cryptorchidism and hypospadias: a case-control study in newborn boys. Environ. Health Perspect. 112, 1570–1576 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  73. McBride, M. L., Van Den Steen, N., Lamb, C. W. & Gallagher, R. P. Maternal and gestational factors in cryptorchidism. Int. J. Epidemiol. 20, 964–970 (1991).

    Article  CAS  PubMed  Google Scholar 

  74. Mavrogenis, S., Urbán, R. & Czeizel, A. E. Characteristics of boys with the so-called true undescended testis diagnosed at the third postnatal month — a population-based case-control study. J. Matern. Fetal Neonatal Med. 28, 1152–1157 (2015).

    Article  PubMed  Google Scholar 

  75. Mori, M., Davies, T. W., Tsukamoto, T., Kumamoto, Y. & Fukuda, K. Maternal and other factors of cryptorchidism — a case-control study in Japan. Kurume Med. J. 39, 53–60 (1992).

    Article  CAS  PubMed  Google Scholar 

  76. Kurahashi, N. et al. Parental and neonatal risk factors for cryptorchidism. Med. Sci. Monit. 11, CR274–CR283 (2005).

    PubMed  Google Scholar 

  77. Zakaria, M., Azab, S., El Baz, M., Fawaz, L. & Bahagat, A. Cryptorchidism in Egyptian neonates. J. Pediatr. Urol. 9, 815–819 (2013).

    Article  PubMed  Google Scholar 

  78. Berkowitz, G. S., Lapinski, R. H., Godbold, J. H., Dolgin, S. E. & Holzman, I. R. Maternal and neonatal risk factors for cryptorchidism. Epidemiology 6, 127–131 (1995).

    Article  CAS  PubMed  Google Scholar 

  79. McGlynn, K. A., Graubard, B. I., Klebanoff, M. A. & Longnecker, M. P. Risk factors for cryptorchism among populations at differing risks of testicular cancer. Int. J. Epidemiol. 35, 787–795 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Møller, H. & Skakkebæk, N. E. Testicular cancer and cryptorchidism in relation to prenatal factors: case-control studies in Denmark. Cancer Causes Control 8, 904–912 (1997).

    Article  PubMed  Google Scholar 

  81. Swerdlow, A. J., Wood, K. H. & Smith, P. G. A case-control study of the aetiology of cryptorchidism. J. Epidemiol. Community Health 37, 238–244 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Csermely, G., Susánszky, É. & Czeizel, A. E. Association of young and advanced age of pregnant women with the risk of isolated congenital abnormalities in Hungary — a population-based case-matched control study. J. Matern. Fetal Neonatal Med. 28, 436–442 (2015).

    Article  PubMed  Google Scholar 

  83. Weidner, I. S., Møller, H., Jensen, T. K. & SkakkebÆk, N. E. Risk factors for cryptorchidism and hypospadias. J. Urol. 161, 1606–1609 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Hjertkvist, M., Damber, J. E. & Bergh, A. Cryptorchidism: a registry based study in Sweden on some factors of possible aetiological importance. J. Epidemiol. Community Health 43, 324–329 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mayr, J. M., Lawrenz, K. & Berghold, A. Undescended testicles: an epidemiological review. Acta Paediatr. 88, 1089–1093 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Biggs, M. L., Baer, A. & Critchlow, C. W. Maternal, delivery, and perinatal characteristics associated with cryptorchidism: a population-based case-control study among births in Washington State. Epidemiology 13, 197–204 (2002).

    Article  PubMed  Google Scholar 

  87. Bernstein, L. et al. Higher maternal levels of free estradiol in first compared to second pregnancy: early gestational differences. J. Natl Cancer Inst. 76, 1035–1039 (1986).

    CAS  PubMed  Google Scholar 

  88. Zhang, L. et al. Maternal gestational smoking, diabetes, alcohol drinking, pre-pregnancy obesity and the risk of cryptorchidism: a systematic review and meta-analysis of observational studies. PLoS ONE 10, e0119006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Virtanen, H. E. et al. Mild gestational diabetes as a risk factor for congenital cryptorchidism. J. Clin. Endocrinol. Metab. 91, 4862–4865 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Nielsen, G. L. et al. Risk of specific congenital abnormalities in offspring of women with diabetes. Diabet. Med. 22, 693–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Brouwers, M. M. et al. Risk factors for undescended testis. J. Pediatr. Urol. 8, 59–66 (2012).

    Article  PubMed  Google Scholar 

  92. Agopian, A. J., Langlois, P. H., Ramakrishnan, A. & Canfield, M. A. Epidemiologic features of male genital malformations and subtypes in Texas. Am. J. Med. Genet. A 164A, 943–949 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Bánhidy, F., Ács, N., Puhó, E. H. & Czeizel, A. E. Congenital abnormalities in the offspring of pregnant women with type 1, type 2 and gestational diabetes mellitus: a population-based case-control study. Congenit. Anom. (Kyoto) 50, 115–121 (2010).

    Article  Google Scholar 

  94. Trabert, B. et al. Gestational diabetes and the risk of cryptorchidism and hypospadias. Epidemiology 25, 152–153 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Klebanoff, M. A. & Mills, J. L. Is vomiting during pregnancy teratogenic? BMJ 292, 724–726 (1986).

    Article  CAS  PubMed  Google Scholar 

  96. Czeizel, A. E., Puhó, E., Ács, N. & Bánhidy, F. Inverse association between severe nausea and vomiting in pregnancy and some congenital abnormalities. Am. J. Med. Genet. A. 140, 453–462 (2006).

    Article  PubMed  Google Scholar 

  97. Zhang, J., Olshan, A. & Cai, W. W. Birth defects in relation to threatened abortion. Epidemiology 5, 341–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, J. & Cai, W. W. Association of the common cold in the first trimester of pregnancy with birth defects. Pediatrics 92, 559–563 (1993).

    CAS  PubMed  Google Scholar 

  99. Ingstrup, K. G. et al. Maternal bereavement and cryptorchidism in offspring. Epidemiology 26, 100–105 (2015).

    Article  PubMed  Google Scholar 

  100. Shono, T. & Suita, S. Disturbed pituitary–testicular axis inhibits testicular descent in the prenatal rat. BJU Int. 92, 641–643 (2003).

    Article  CAS  PubMed  Google Scholar 

  101. Mavrogenis, S., Urban, R., Czeizel, A. E. & Ács, N. Possible association of maternal factors with the higher risk of isolated true undescended testis: a population-based case-control study. Congenit. Anom. (Kyoto) 54, 178–183 (2014).

    Article  Google Scholar 

  102. Depue, R. H. Maternal and gestational factors affecting the risk of cryptorchidism and inguinal hernia. Int. J. Epidemiol. 13, 311–318 (1984).

    Article  CAS  PubMed  Google Scholar 

  103. Adams, S. V., Hastert, T. A., Huang, Y. & Starr, J. R. No association between maternal pre-pregnancy obesity and risk of hypospadias or cryptorchidism in male newborns. Birth Defects Res. A Clin. Mol. Teratol. 91, 241–248 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Giordano, F. et al. Maternal diet and the risk of hypospadias and cryptorchidism in the offspring. Paediatr. Perinat. Epidemiol. 22, 249–260 (2008).

    Article  PubMed  Google Scholar 

  105. Berkowitz, G. S. & Lapinski, R. H. Risk factors for cryptorchidism: a nested case-control study. Paediatr. Perinat. Epidemiol. 10, 39–51 (1996).

    Article  CAS  PubMed  Google Scholar 

  106. Strandberg-Larsen, K., Jensen, M. S., Ramlau-Hansen, C. H., Grønbæk, M. & Olsen, J. Alcohol binge drinking during pregnancy and cryptorchidism. Hum. Reprod. 24, 3211–3219 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Jensen, M. S., Bonde, J. P. & Olsen, J. Prenatal alcohol exposure and cryptorchidism. Acta Paediatr. 96, 1681–1685 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Mongraw-Chaffin, M. L., Cohn, B. A., Cohen, R. D. & Christianson, R. E. Maternal smoking, alcohol consumption, and caffeine consumption during pregnancy in relation to a son's risk of persistent cryptorchidism: a prospective study in the child health and development studies cohort, 1959–1967. Am. J. Epidemiol. 167, 257–261 (2008).

    Article  PubMed  Google Scholar 

  109. Carbone, P. et al. The possible role of endocrine disrupting chemicals in the aetiology of cryptorchidism and hypospadias: a population-based case-control study in rural Sicily. Int. J. Androl. 30, 3–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Damgaard, I. N. et al. Cryptorchidism and maternal alcohol consumption during pregnancy. Environ. Health Perspect. 115, 272–277 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Cnattingius, S. The epidemiology of smoking during pregnancy: smoking prevalence, maternal characteristics, and pregnancy outcomes. Nicotine Tob. Res. 6, S125–S140 (2004).

    Article  PubMed  Google Scholar 

  112. Werler, M. Maternal smoking and undescended testes: reaching a tipping point. Epidemiology 18, 197–198 (2007).

    Article  PubMed  Google Scholar 

  113. Windham, G. C., Mitchell, P., Anderson, M. & Lasley, B. L. Cigarette smoking and effects on hormone function in premenopausal women. Environ. Health Perspect. 113, 1285–1290 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhang, J., Savitz, D. A., Schwingl, P. J. & Cai, W. W. A case-control study of paternal smoking and birth defects. Int. J. Epidemiol. 21, 273–278 (1992).

    Article  CAS  PubMed  Google Scholar 

  115. Jensen, M. S., Toft, G., Thulstrup, A. M., Bonde, J. P. & Olsen, J. Cryptorchidism according to maternal gestational smoking. Epidemiology 18, 220–225 (2007).

    Article  PubMed  Google Scholar 

  116. Hackshaw, A., Rodeck, C. & Boniface, S. Maternal smoking in pregnancy and birth defects: a systematic review based on 173 687 malformed cases and 11.7 million controls. Hum. Reprod. Update 17, 589–604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Thorup, J., Cortes, D. & Petersen, B. L. The incidence of bilateral cryptorchidism is increased and the fertility potential is reduced in sons born to mothers who have smoked during pregnancy. J. Urol. 176, 734–737 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Gaspari, L. et al. Prenatal environmental risk factors for genital malformations in a population of 1442 French male newborns: a nested casecontrol study. Hum. Reprod. 26, 3155–3162 (2011).

    Article  PubMed  Google Scholar 

  119. Office on Smoking and Health. The Health Consequences of Smoking for Women. A Report of the Surgeon General (US Department of Health and Human Services, Washington, DC, 1980).

  120. Palmer, J. R. et al. Urogenital abnormalities in men exposed to diethylstilbestrol in utero: acohort study. Environ. Health 8, 37 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Townsend, C. L., Willey, B. A., Cortina-Borja, M., Peckham, C. S. & Tookey, P. A. Antiretroviral therapy and congenital abnormalities in infants born to HIV-infected women in the UK and Ireland, 1990–2007. AIDS 23, 519–524 (2009).

    Article  PubMed  Google Scholar 

  122. Ács, N., Bánhidy, F., Puhó, E. H. & Czeizel, A. E. No association between vulvovaginitis-bacterial vaginosis, related drug treatments of pregnant women, and congenital abnormalities in their offspring — a population-based case-control study. Cent. Eur. J. Med. 3, 332–340 (2008).

    Google Scholar 

  123. Czeizel, A. E., Kazy, Z. & Puhó, E. A population-based case-control teratological study of oral nystatin treatment during pregnancy. Scand. J. Infect. Dis. 35, 830–835 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Louik, C., Lin, A. E., Werler, M. M., Hernández-Díaz, S. & Mitchell, A. A. First-trimester use of selective serotonin-reuptake inhibitors and the risk of birth defects. N. Engl. J. Med. 356, 2675–2683 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Ács, N., Bánhidy, F., Puhó, E. H. & Czeizel, A. E. Senna treatment in pregnant women and congenital abnormalities in their offspring — a population-based case-control study. Reprod. Toxicol. 28, 100–104 (2009).

    Article  CAS  PubMed  Google Scholar 

  126. Bártfai, Z., Somoskövi, A., Puhó, E. H. & Czeizel, A. E. No teratogenic effect of prenoxdiazine: a population-based case-control study. Congenit. Anom. (Kyoto) 47, 16–21 (2007).

    Article  CAS  Google Scholar 

  127. Kjær, D. et al. Use of phenytoin, phenobarbital, or diazepam during pregnancy and risk of congenital abnormalities: a case-time-control study. Pharmacoepidemiol. Drug Saf. 16, 181–188 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Dessens, A. B. et al. Association of prenatal phenobarbital and phenytoin exposure with genital anomalies and menstrual disorders. Teratology 64, 181–188 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Diav-Citrin, O. et al. Pregnancy outcome after in utero exposure to valproate: evidence of dose relationship in teratogenic effect. CNS Drugs 22, 325–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Mazaud-Guittot, S. et al. Paracetamol, aspirin, and indomethacin induce endocrine disturbances in the human fetal testis capable of interfering with testicular descent. J. Clin. Endocrinol. Metab. 98, E1757–E1767 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Snijder, C. A. et al. Intrauterine exposure to mild analgesics during pregnancy and the occurrence of cryptorchidism and hypospadia in the offspring: the Generation R Study. Hum. Reprod. 27, 1191–1201 (2012).

    Article  PubMed  Google Scholar 

  132. Kristensen, D. M. et al. Intrauterine exposure to mild analgesics is a risk factor for development of male reproductive disorders in human and rat. Hum. Reprod. 26, 235–244 (2011).

    Article  CAS  PubMed  Google Scholar 

  133. Philippat, C. et al. Analgesics during pregnancy and undescended testis. Epidemiology 22, 747–749 (2011).

    Article  PubMed  Google Scholar 

  134. Rebordosa, C. et al. Acetaminophen use during pregnancy: effects on risk for congenital abnormalities. Am. J. Obstet. Gynecol. 198, e1–7 (2008).

    Article  CAS  Google Scholar 

  135. Møbjerg Kristensen, D., Main, K. M., Jensen, T. K., Skakkebæk, N. E. & Toppari, J. Reply: analgesic use and its effect on male reproduction. Hum. Reprod. 26, 2259–2260 (2011).

    Article  Google Scholar 

  136. Gurney, J., Shaw, C., Stanley, J., Signal, V. & Sarfati, D. Cannabis exposure and risk of testicular cancer: a systematic review and meta-analysis. BMC Cancer 15, 1–10 (2015).

    Article  CAS  Google Scholar 

  137. Lacson, J. C. A. et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. Cancer 118, 5374–5383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S. & McGlynn, K. A. Marijuana use and testicular germ cell tumors. Cancer 117, 848–853 (2011).

    Article  PubMed  Google Scholar 

  139. Daling, J. R. et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215–1223 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shono, T., Shima, Y., Kondo, T. & Suita, S. In utero exposure to mono-N-butyl phthalate impairs insulin-like factor 3 gene expression and the transabdominal phase of testicular descent in fetal rats. J. Pediatr. Surg. 40, 1861–1864 (2005).

    Article  PubMed  Google Scholar 

  141. McKinnell, C. et al. Expression of insulin-like factor 3 protein in the rat testis during fetal and postnatal development and in relation to cryptorchidism induced by in utero exposure to Di (n-butyl) phthalate. Endocrinology 146, 4536–4544 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Jørgensen, K. T. et al. Risk of cryptorchidism among sons of horticultural workers and farmers in Denmark. Scand. J. Work Environ. Health 40, 323–330 (2014).

    Article  PubMed  Google Scholar 

  143. Weidner, I. S., Møller, H., Jensen, T. K. & Skakkebæk, N. E. Cryptorchidism and hypospadias in sons of gardeners and farmers. Environ. Health Perspect. 106, 793–796 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gabel, P. et al. The risk of cryptorchidism among sons of women working in horticulture in Denmark: a cohort study. Environ. Health 10, 100 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Kristensen, P., Irgens, L. M., Andersen, A., Bye, A. S. & Sundheim, L. Birth defects among offspring of Norwegian farmers, 1967–1991. Epidemiology 8, 537–544 (1997).

    Article  CAS  PubMed  Google Scholar 

  146. Morales-Surez-Varela, M. M. et al. Parental occupational exposure to endocrine disrupting chemicals and male genital malformations: a study in the Danish national birth cohort study. Environ. Health 10, 3 (2011).

    Article  Google Scholar 

  147. Vaktskjold, A. et al. Genital malformations in newborns of female nickel-refinery workers. Scand. J. Work Environ. Health 32, 41–50 (2006).

    Article  PubMed  Google Scholar 

  148. Jørgensen, K. T. et al. Risk of cryptorchidism and hypospadias among boys of maternal hairdressers — a Danish population-based cohort study. Scand. J. Work Environ. Health 39, 302–309 (2013).

    Article  PubMed  Google Scholar 

  149. Carran, M. & Shaw, I. C. New Zealand Malayan war veterans' exposure to dibutylphthalate is associated with an increased incidence of cryptorchidism, hypospadias and breast cancer in their children. N. Z. Med. J. 125, 52–63 (2012).

    PubMed  Google Scholar 

  150. Bornman, R., de Jager, C., Worku, Z., Farias, P. & Reif, S. DDT and urogenital malformations in newborn boys in a malarial area. BJU Int. 106, 405–411 (2010).

    Article  PubMed  Google Scholar 

  151. Carbone, P. et al. Cryptorchidism and hypospadias in the Sicilian district of Ragusa and the use of pesticides. Reprod. Toxicol. 22, 8–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  152. García-Rodríguez, J. et al. Exposure to pesticides and cryptorchidism: geographical evidence of a possible association. Environ. Health Perspect. 104, 1090–1095 (1996).

    PubMed  PubMed Central  Google Scholar 

  153. Agopian, A. J., Lupo, P. J., Canfield, M. A. & Langlois, P. H. Case-control study of maternal residential atrazine exposure and male genital malformations. Am. J. Med. Genet. A 161A, 977–982 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Czeizel, A. E., Hegedüs, S. & Tímár, L. Congenital abnormalities and indicators of germinal mutations in the vicinity of an acrylonitrile producing factory. Mutat. Res. 427, 105–123 (1999).

    Article  CAS  PubMed  Google Scholar 

  155. Chul Kim, S., Kyoung Kwon, S. & Pyo Hong, Y. Trends in the incidence of cryptorchidism and hypospadias of registry-based data in Korea: a comparison between industrialized areas of petrochemical estates and a non-industrialized area. Asian J. Androl. 13, 715–718 (2011).

    Article  PubMed  Google Scholar 

  156. Waliszewski, S. M. et al. Persistent organochlorine pesticides levels in blood serum lipids in women bearing babies with undescended testis. Bull. Environ. Contam. Toxicol. 75, 952–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Trabert, B., Longnecker, M. P., Brock, J. W., Klebanoff, M. A. & McGlynn, K. A. Maternal pregnancy levels of trans-nonachlor and oxychlordane and prevalence of cryptorchidism and hypospadias in boys. Environ. Health Perspect. 120, 478–482 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Small, C. M. et al. Maternal exposure to a brominated flame retardant and genitourinary conditions in male offspring. Environ. Health Perspect. 117, 1175–1179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bhatia, R. et al. Organochlorine pesticides and male genital anomalies in the child health and development studies. Environ. Health Perspect. 113, 220–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Pierik, F. H., Klebanoff, M. A., Brock, J. W. & Longnecker, M. P. Maternal pregnancy serum level of heptachlor epoxide, hexachlorobenzene, and β-hexachlorocyclohexane and risk of cryptorchidism in offspring. Environ. Res. 105, 364–369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McGlynn, K. A. et al. Maternal pregnancy levels of polychlorinated biphenyls and risk of hypospadias and cryptorchidism in male offspring. Environ. Health Perspect. 117, 1472–1476 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Longnecker, M. P. et al. Maternal serum level of 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene and risk of cryptorchidism, hypospadias, and polythelia among male offspring. Am. J. Epidemiol. 155, 313–322 (2002).

    Article  PubMed  Google Scholar 

  163. Main, K. M. et al. Flame retardants in placenta and breast milk and cryptorchildism in newborn boys. Environ. Health Perspect. 115, 1519–1526 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Virtanen, H. E. et al. Associations between congenital cryptorchidism in newborn boys and levels of dioxins and PCBs in placenta. Int. J. Androl. 35, 283–293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Shen, H. et al. Infant exposure to persistent organochlorine compounds is higher in Denmark than in Finland. WIT Trans. Ecol. Environ. 110, 45–52 (2008).

    Article  CAS  Google Scholar 

  166. Shen, H. et al. Concentrations of persistent organochlorine compounds in human milk and placenta are higher in Denmark than in Finland. Hum. Reprod. 23, 201–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  167. Main, K. M. et al. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ. Health Perspect. 114, 270–276 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Krysiak-Baltyn, K. et al. Association between chemical pattern in breast milk and congenital cryptorchidism: modelling of complex human exposures. Int. J. Androl. 35, 294–302 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Damgaard, I. N. et al. Persistent pesticides in human breast milk and cryptorchidism. Environ. Health Perspect. 114, 1133–1138 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Brucker-Davis, F. et al. Cord blood thyroid tests in boys born with and without cryptorchidism: correlations with birth parameters and in utero xenobiotics exposure. Thyroid 21, 1133–1141 (2011).

    Article  CAS  PubMed  Google Scholar 

  171. Arrebola, J. P. et al. A novel biomarker for anti-androgenic activity in placenta reveals risks of urogenital malformations. Reproduction 149, 605–613 (2015).

    Article  CAS  PubMed  Google Scholar 

  172. Jensen, D. V. et al. No association between exposure to perfluorinated compounds and congenital cryptorchidism: a nested case-control study among 215 boys from Denmark and Finland. Reproduction 147, 411–417 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Rantakokko, P. et al. Association of placenta organotin concentrations with congenital cryptorchidism and reproductive hormone levels in 280 newborn boys from Denmark and Finland. Hum. Reprod. 28, 1647–1660 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Fernandez, M. F. et al. Human exposure to endocrine-disrupting chemicals and prenatal risk factors for cryptorchidism and hypospadias: a nested case-control study. Environ. Health Perspect. 115, 8–14 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Fernández, M. F. et al. Bisphenol A and other phenols in human placenta from children with cryptorchidism or hypospadias. Reprod. Toxicol. 59, 89–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Fénichel, P. et al. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum. Reprod. 27, 983–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Koskenniemi, J. J. et al. Association between levels of persistent organic pollutants in adipose tissue and cryptorchidism in early childhood: a case-control study. Environ. Health 14, 78 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hosie, S., Loff, S., Witt, K., Niessen, K. & Waag, K. L. Is there a correlation between organochlorine compounds and undescended testes? Eur. J. Pediatr. Surg. 10, 304–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Saiyed, H. et al. Effect of endosulfan on male reproductive development. Environ. Health Perspect. 111, 1958–1962 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Komarowska, M. D. et al. Serum bisphenol A level in boys with cryptorchidism: a step to male infertility? Int. J. Endocrinol. 2015, 973154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Brucker-Davis, F. et al. Cryptorchidism at birth in Nice area (France) is associated with higher prenatal exposure to PCBs and DDE, as assessed by colostrum concentrations. Hum. Reprod. 23, 1708–1718 (2008).

    Article  CAS  PubMed  Google Scholar 

  182. Chevrier, C. et al. Maternal urinary phthalates and phenols and male genital anomalies. Epidemiology 23, 353–356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Jackson, M. B. & Swerdlow, A. J. Seasonal variations in cryptorchidism. J. Epidemiol. Community Health 40, 210–213 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kaleva, M. et al. Circannual rhythm in the incidence of cryptorchidism in Finland. Int. J. Androl. 28, 53–57 (2005).

    Article  PubMed  Google Scholar 

  185. Mamoulakis, C. et al. Cryptorchidism: seasonal variations in Greece do not support the theory of light. Andrologia 34, 194–203 (2002).

    Article  PubMed  Google Scholar 

  186. Brantsæter, A. L. et al. Organic food consumption during pregnancy and hypospadias and cryptorchidism at birth: the Norwegian mother and child cohort study (MoBa). Environ. Health Perspect. 124, 357–364 (2016).

    Article  PubMed  Google Scholar 

  187. Fulgoni, V. L. III, Keast, D. R. & Lieberman, H. R. Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. Am. J. Clin. Nutr. 101, 1081–1087 (2015).

    Article  CAS  PubMed  Google Scholar 

  188. Gurney, J., Sarfati, D., Stanley, J. & Studd, R. Do ethnic patterns in cryptorchidism reflect those found in testicular cancer? J. Urol. 190, 1852–1857 (2013).

    Article  PubMed  Google Scholar 

  189. Jain, V. G. & Singal, A. K. Shorter anogenital distance correlates with undescended testis: a detailed genital anthropometric analysis in human newborns. Hum. Reprod. 28, 2343–2349 (2013).

    Article  PubMed  Google Scholar 

  190. Kramer, M. S. Determinants of low birth weight: methodological assessment and meta-analysis. Bull. World Health Organ. 65, 663–737 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Kayode, G. A. et al. Contextual risk factors for low birth weight: a multilevel analysis. PLoS ONE 9, e109333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jensen, M. S. et al. Cryptorchidism concordance in monozygotic and dizygotic twin brothers, full brothers, and half-brothers. Fertil. Steril. 93, 124–129 (2010).

    Article  PubMed  Google Scholar 

  193. Schnack, T. H. et al. Familial aggregation of cryptorchidism — a nationwide cohort study. Am. J. Epidemiol. 167, 1453–1457 (2008).

    Article  PubMed  Google Scholar 

  194. Ralis, Z. A. Birth trauma to muscles in babies born by breech delivery and its possible fatal consequences. Arch. Dis. Child. 50, 4–13 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Dunn, P. M. Testicular birth trauma. Arch. Dis. Child. 50, 744–745 (1975).

    Google Scholar 

  196. Tiwary, C. M. Testicular injury in breech delivery: possible implications. Urology 34 210–212 (1989).

    Article  CAS  PubMed  Google Scholar 

  197. Depue, R. H. Cryptorchidism, and epidemiologic study with emphasis on the relationship to central nervous system dysfunction. Teratology 37, 301–305 (1988).

    Article  CAS  PubMed  Google Scholar 

  198. Barthold, J. S. et al. Altered infant feeding patterns in boys with acquired nonsyndromic cryptorchidism. Birth Defects Res. A Clin. Mol. Teratol. 94, 900–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Nef, S. & Parada, L. F. Cryptorchidism in mice mutant for Insl3. Nat. Genet. 22, 295–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  200. Elert, A., Jahn, K., Heidenreich, A. & Hofmann, R. Population-based investigation of familial undescended testis and its association with other urogenital anomalies. J. Pediatr. Urol. 1, 403–407 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Qin, X. Y. et al. Association of variants in genes involved in environmental chemical metabolism and risk of cryptorchidism and hypospadias. J. Hum. Genet. 57, 434–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  202. Aschim, E. L. et al. Linkage between cryptorchidism, hypospadias, and GGN repeat length in the androgen receptor gene. J. Clin. Endocrinol. Metab. 89, 5105–5109 (2004).

    Article  CAS  PubMed  Google Scholar 

  203. Zhou, B. et al. The variations in the AXIN1 gene and susceptibility to cryptorchidism. J. Pediatr. Urol. 11, 132.e1–132.e5 (2015).

    Article  Google Scholar 

  204. Tang, K. F., Zheng, J. Z. & Xing, J. P. Molecular analysis of SNP12 in estrogen receptor α gene in hypospadiac or cryptorchid patients from northwestern China. Urol. Int. 87, 359–362 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Yoshida, R. et al. Association of cryptorchidism with a specific haplotype of the estrogen receptor α gene: implication for the susceptibility to estrogenic environmental endocrine disruptors. J. Clin. Endocrinol. Metab. 90, 4716–4721 (2005).

    Article  CAS  PubMed  Google Scholar 

  206. Galan, J. J. et al. Molecular analysis of estrogen receptor alpha gene AGATA haplotype and SNP12 in European populations: potential protective effect for cryptorchidism and lack of association with male infertility. Hum. Reprod. 22, 444–449 (2007).

    Article  CAS  PubMed  Google Scholar 

  207. Kolon, T. F. et al. Analysis of homeobox gene HOXA10 mutations in cryptorchidism. J. Urol. 161, 275–280 (1999).

    Article  CAS  PubMed  Google Scholar 

  208. Foresta, C. & Ferlin, A. Role of INSL3 and LGR8 in cryptorchidism and testicular functions. Reprod. Biomed. Online 9, 294–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  209. Gorlov, I. P. et al. Mutations of the GREAT gene cause cryptorchidism. Hum. Mol. Genet. 11, 2309–2318 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Ars, E. et al. Further insights into the role of t222p variant of rxfp2 in non-syndromic cryptorchidism in two mediterranean populations. Int. J. Androl. 34, 333–338 (2011).

    Article  CAS  PubMed  Google Scholar 

  211. Salemi, M. et al. Expression of phosphodiesterase 4B cAMP-specific gene in subjects with cryptorchidism and Down's Syndrome. J. Clin. Lab. Anal. 30, 196–199 (2015).

    Article  CAS  Google Scholar 

  212. Wada, Y., Okada, M., Fukami, M., Sasagawa, I. & Ogata, T. Association of cryptorchidism with Gly146Ala polymorphism in the gene for steroidogenic factor-1. Fertil. Steril. 85, 787–790 (2006).

    Article  CAS  PubMed  Google Scholar 

  213. Salemi, M. et al. SPAG5 mRNA is over-expressed in peripheral blood leukocytes of patients with Down's syndrome and cryptorchidism. Neurol. Sci. 34, 549–551 (2013).

    Article  PubMed  Google Scholar 

  214. Salemi, M. et al. Expression of STRBP mRNA in patients with cryptorchidism and Down's syndrome. J. Endocrinol. Invest. 35, 5–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  215. Barthold, J. S. et al. Pathway analysis supports association of nonsyndromic cryptorchidism with genetic loci linked to cytoskeleton-dependent functions. Hum. Reprod. 30, 2439–2451 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. El Houate, B. et al. Novel mutations involving the INSL3 gene associated with cryptorchidism. J. Urol. 177, 1947–1951 (2007).

    Article  CAS  PubMed  Google Scholar 

  217. Ferlin, A. et al. Mutations in INSL3 and RXFP2 genes in cryptorchid boys. Ann. NY Acad. Sci. 1160, 213–214 (2009).

    Article  CAS  PubMed  Google Scholar 

  218. Ferlin, A. et al. Mutational screening of NR5A1 gene encoding steroidogenic factor 1 in cryptorchidism and male factor infertility and functional analysis of seven undescribed mutations. Fertil. Steril. 104, 163–169.e161 (2015).

    Article  CAS  PubMed  Google Scholar 

  219. Gurney, J., Sarfati, D. & Stanley, J. Obscure etiology, unusual disparity: the epidemiology of testicular cancer in New Zealand. Cancer Causes Control 26, 561–569 (2015).

    Article  PubMed  Google Scholar 

  220. Sarfati, D., Shaw, C., Blakely, T., Atkinson, J. & Stanley, J. Ethnic and socioeconomic trends in testicular cancer. Int. J. Cancer 128, 1683–1691 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.K.G. and V.S. researched data for the article, J.K.G. wrote the article. J.K.G., K.A.McG., J.S., T.M., C.S., R.E.,L.R., J.H. and D.S. made substantial contributions to discussion of content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Jason K. Gurney.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Orchidopexy

Surgical repositioning of the cryptorchid testis into the scrotum.

Subfertility

Reduced ability to reproduce, as measured in males using self-reported markers, such as difficulty impregnating a partner, or biomarkers, such as sperm count and motility.

Preeclampsia

A pregnancy-related condition involving high blood pressure, and often including fluid retention and proteinurea.

Mendelian randomization

A methodological technique in which inherited genetic variants that alter predisposition to (or mirror the effect of) a given environmental exposure are used to study the effect of the exposure on disease risk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurney, J., McGlynn, K., Stanley, J. et al. Risk factors for cryptorchidism. Nat Rev Urol 14, 534–548 (2017). https://doi.org/10.1038/nrurol.2017.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing