Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition

Abstract

Immunotherapy has been used in localized urothelial carcinoma for decades, especially in the treatment of superficial disease, in which instillation of BCG is a commonly used treatment option. Clinical investigations based on new insights into the immunogenic potential of metastatic urothelial carcinoma have led to the accelerated FDA approval of the immune checkpoint inhibitors atezolizumab, nivolumab, durvalumab, avelumab, and pembrolizumab. Preliminary findings suggest additional benefits of combinations of immunotherapeutic agents as a future treatment approach in metastatic urothelial carcinoma. Treatment experience with immunotherapy suggests that these drugs are associated with a unique spectrum of immune-related adverse events and specific immune-related patterns of response, including cases of pseudoprogression, which could impede the optimal use of immune checkpoint inhibitors in the clinic. Appropriate management of immune-related adverse events and a greater awareness of immune-mediated response patterns will help to inform treatment decisions and improve patient outcomes; predictive biomarkers of response might facilitate selection of patients who are most likely to respond to and benefit from these exciting new treatments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The programmed death pathway.
Figure 2: CT images from a patient with pseudoprogression following treatment with nivolumab.

Similar content being viewed by others

References

  1. Fleshner, N. E. et al. The national cancer data base report on bladder carcinoma. The American College of Surgeons commission on cancer and the American Cancer Society. Cancer 78, 1505–1513 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    Article  PubMed  Google Scholar 

  3. National Cancer Institute. Cancer stat facts: bladder cancer. National Cancer Institute http://seer.cancer.gov/statfacts/html/urinb.html (2016).

  4. Logothetis, C. J. et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J. Clin. Oncol. 8, 1050–1055 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Sternberg, C. N. et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J. Clin. Oncol. 19, 2638–2646 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. van de Putte, E. E. et al. Neoadjuvant induction dose-dense MVAC for muscle invasive bladder cancer: efficacy and safety compared with classic MVAC and gemcitabine/cisplatin. World J. Urol. 34, 157–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Dash, A. et al. Impact of renal impairment on eligibility for adjuvant cisplatin-based chemotherapy in patients with urothelial carcinoma of the bladder. Cancer 107, 506–513 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sonpavde, G., Galsky, M. D., Latini, D. & Chen, G. J. Cisplatin-ineligible and chemotherapy-ineligible patients should be the focus of new drug development in patients with advanced bladder cancer. Clin. Genitourin. Cancer 12, 71–73 (2014).

    Article  PubMed  Google Scholar 

  9. Bellmunt, J. et al. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy: EORTC intergroup study 30987. J. Clin. Oncol. 30, 1107–1113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. von der Maase, H. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. McCaffrey, J. A. et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J. Clin. Oncol. 15, 1853–1857 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Bellmunt, J. et al. Long-term survival results of a randomized phase III trial of vinflunine plus best supportive care versus best supportive care alone in advanced urothelial carcinoma patients after failure of platinum-based chemotherapy. Ann. Oncol. 24, 1466–1472 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Sharma, P. et al. CD8 tumor-infiltrating lymphocytes are predictive of survival in muscle-invasive urothelial carcinoma. Proc. Natl Acad. Sci. USA 104, 3967–3972 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  16. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer-a current perspective. Nat. Rev. Urol. 11, 153–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Clark, P. E. et al. Bladder cancer. J. Natl Compr. Canc. Netw. 11, 446–475 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Lam, J. S. et al. Bacillus calmete-guerin plus interferon-α2B intravesical therapy maintains an extended treatment plan for superficial bladder cancer with minimal toxicity. Urol. Oncol. 21, 354–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Siefker-Radtke, A. O. et al. Phase III trial of fluorouracil, interferon alpha-2b, and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in metastatic or unresectable urothelial cancer. J. Clin. Oncol. 20, 1361–1367 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Chou, R. et al. Intravesical therapy for the treatment of nonmuscle invasive bladder cancer: a systematic review and meta-analysis. J. Urol. 197, 1189–1199 (2017).

    Article  PubMed  Google Scholar 

  21. Faraj, S. F. et al. Assessment of tumoral PD-L1 expression and intratumoral CD8+ T cells in urothelial carcinoma. Urology 85, 703–706 (2015).

    Article  PubMed  Google Scholar 

  22. Inman, B. A. et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCG-induced granulomata: associations with localized stage progression. Cancer 109, 1499–1505 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Fife, B. T. & Bluestone, J. A. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224, 166–182 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Finger, L. R. et al. The human PD-1 gene: complete cDNA, genomic organization, and developmentally regulated expression in B cell progenitors. Gene 197, 177–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Shi, L., Chen, S., Yang, L. & Li, Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol. 6, 74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thibult, M. L. et al. PD-1 is a novel regulator of human B-cell activation. Int. Immunol. 25, 129–137 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Zou, W., Wolchok, J. D. & Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci. Transl. Med. 8, 328rv4 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bardhan, K., Anagnostou, T. & Boussiotis, V. A. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7, 550 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong, H. et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8, 793–800 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Agrawal, B., Gendler, S. J. & Longenecker, B. M. The biological role of mucins in cellular interactions and immune regulation: prospects for cancer immunotherapy. Mol. Med. Today 4, 397–403 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Driessens, G. et al. β-Catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-γ1 phosphorylation. J. Immunol. 186, 784–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Dunne, M. R. et al. HLA-DR expression in tumor epithelium is an independent prognostic indicator in esophageal adenocarcinoma patients. Cancer Immunol. Immunother. 66, 841–850 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kouo, T. et al. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol. Res. 3, 412–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pandolfi, F. et al. Expression of HLA-A2 antigen in human melanoma cell lines and its role in T-cell recognition. Cancer Res. 51, 3164–3170 (1991).

    CAS  PubMed  Google Scholar 

  36. Rodriguez, P. C. et al. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64, 5839–5849 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Shan, Y. S. et al. Suppression of mucin 2 promotes interleukin-6 secretion and tumor growth in an orthotopic immune-competent colon cancer animal model. Oncol. Rep. 32, 2335–2342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sweis, R. F. et al. Molecular drivers of the non-T-cell-inflamed tumor microenvironment in urothelial bladder cancer. Cancer Immunol. Res. 4, 563–568 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choueiri, T. K. et al. Immunomodulatory activity of nivolumab in metastatic renal cell carcinoma (mRCC): association of biomarkers with clinical outcomes [abstract]. J. Clin. Oncol. 33 (Suppl. 15), 4500 (2015).

    Article  Google Scholar 

  41. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koh, J. et al. Clinicopathologic analysis of programmed cell death-1 and programmed cell death-ligand 1 and 2 expressions in pulmonary adenocarcinoma: comparison with histology and driver oncogenic alteration status. Mod. Pathol. 28, 1154–1166 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Tarhini, A. A. et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9, e87705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carthon, B. C. et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16, 2861–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liakou, C. I. et al. CTLA-4 blockade increases IFNγ-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc. Natl Acad. Sci. USA 105, 14987–14992 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Loriot, Y. et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): updated OS, safety and biomarkers from the phase II IMvigor210 study. Ann. Oncol. 27 (Suppl. 6), 783P (2016).

    Google Scholar 

  48. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 389, 67–76 (2017).

    Article  CAS  Google Scholar 

  51. Massard, C. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34, 3119–3125 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Plimack, E. R. et al. Pembrolizumab (MK-3475) for advanced urothelial cancer: updated results and biomarker analysis from KEYNOTE-012 [abstract]. J. Clin. Oncol. 33 (Suppl. 7), 4502 (2015).

    Article  Google Scholar 

  53. Bellmunt, J. et al. KEYNOTE-045: randomized phase 3 trial of pembrolizumab (MK-3475) versus paclitaxel, docetaxel, or vinflunine for previously treated metastatic urothelial cancer [abstract]. J. Clin. Oncol. 33 (Suppl. 7), TPS4571 (2015).

    Article  Google Scholar 

  54. Balar, A. et al. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: preliminary results from the phase 2 keynote-052 study. Ann. Oncol. 27 (Suppl. 6), LBA32_PR (2016).

    Google Scholar 

  55. Patel, M. et al. Avelumab (MSB0010718C; anti–PD-L1) in patients with metastatic urothelial carcinoma progressed after platinum-based therapy or platinum ineligible. Ann. Oncol. 27 (Suppl. 6), 777PD (2016).

    Google Scholar 

  56. Sharma, P. et al. Efficacy and safety of nivolumab plus ipilimumab in metastatic urothelial cancer: first results from the phase I/II checkmate 032 study society for immunotherapy of cancer (SITC) annual meeting. National Harbor (in the press).

  57. Apolo, A. B. et al. A phase I study of cabozantinib plus nivolumab (CaboNivo) in patients (pts) refractory metastatic urothelial carcinoma (mUC) and other genitourinary (GU) tumors. Ann. Oncol. 27 (Suppl. 6), 774PD (2016).

    Google Scholar 

  58. Bristol-Myers Squibb. Latest News. Bristol-Myers Squibb https://investors.bms.com/iframes/press-releases/press-release-details/2016/Bristol-Myers-Squibb-and-Calithera-Biosciences-Announce-Clinical-Collaboration-to-Evaluate-Opdivo-nivolumab-in-Combination-with-CB-839-in-Clear-Cell-Renal-Cell-Carcinoma/default.aspx (2016).

  59. Powles, T. et al. A phase 3 study of first-line durvalumab (MEDI4736) ± tremelimumab versus standard of care (SoC) chemotherapy (CT) in patients (pts) with unresectable Stage IV urothelial bladder cancer (UBC): DANUBE [abstract]. J. Clin. Oncol. 34 (Suppl. 15), TPS4574 (2016).

    Article  Google Scholar 

  60. Hamid, O. et al. Combination of an anti-PD-1 antibody, with durvalumab, an anti-PD-L1 antibody: a phase 1, open-label study in advanced malignancies. Ann. Oncol. 27 (Suppl. 6), 1050PD (2016).

    Google Scholar 

  61. Lee, H. T. et al. Molecular mechanism of PD-1/PD-L1 blockade via anti-PD-L1 antibodies atezolizumab and durvalumab. Sci. Rep. 7, 5532 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Genetech. TECENTRIQ prescribing information. Genetech https://www.gene.com/download/pdf/tecentriq_prescribing.pdf (2017).

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02302807?term=NCT02302807&rank=1 (2017).

  65. Roche. Roche provides update on phase III study of TECENTRIQ® (atezolizumab) in people with previously treated advanced bladder cancer. Roche http://www.roche.com/media/store/releases/med-cor-2017-05-10.htm (2017).

  66. Wang, C. et al. In vitro characterization of the anti-PD-1 antibody nivolumab, BMS-936558, and in vivo toxicology in non-human primates. Cancer Immunol. Res. 2, 846–856 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Bristol-Myers Squibb. OPDIVO (nivolumab) prescribing information. Bristol-Myers Squibb https://packageinserts.bms.com/pi/pi_opdivo.pdf (2017).

  68. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. [No authors listed.] Nivolumab doubles survival for patients with HNSCC. Cancer Discov. 6, OF3 (2016).

  72. Motzer, R. J. et al. Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J. Clin. Oncol. 33, 1430–1437 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Overman, M. J. et al. Nivolumab ± ipilimumab in treatment (tx) of patients (pts) with metastatic colorectal cancer (mCRC) with and without high microsatellite instability (MSI-H): CheckMate-142 interim results [abstract]. J. Clin. Oncol. 34 (Suppl. 15), 3501 (2016).

    Article  Google Scholar 

  75. El-Khoueiry, A. B. et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389, 2492–2502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. US Food and Drug Administration. Imfinzi (durvalumab) prescribing information. FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761069s000lbl.pdf (2017).

  77. Apolo, A. B. et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J. Clin. Oncol. 35, 2117–2124 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. US Food and Drug Administration. Bavencio (avelumab) prescribing information. FDA https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/761049s000lbl.pdf (2017).

  79. Boyerinas, B. et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res. 3, 1148–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Merck. Keytruda (pembrolizumab) prescribing information. Merck https://www.merck.com/product/usa/pi_circulars/k/keytruda/keytruda_pi.pdf (2017).

  82. Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Antonia, S. et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 17, 299–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hammers, H. J. et al. Updated results from a phase I study of nivolumab (Nivo) in combination with ipilimumab (Ipi) in metastatic renal cell carcinoma (mRCC): the CheckMate 016 study. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2016.72.1985 (2017).

  85. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03036098 (2017).

  87. Hoimes, C. J. et al. Hcrn GU14-188: neoadjuvant pembrolizumab (P) and gemcitabine (G) with or without cisplatin (C) in muscle invasive urothelial cancer (MIUC) [abstract]. J. Clin. Oncol. 34 (Suppl. 15), TPS4578 (2016).

    Article  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02178722 (2017).

  89. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Weber, J. S. et al. Safety profile of nivolumab monotherapy: a pooled analysis of patients with advanced melanoma. J. Clin. Oncol. 35, 785–792 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Medina, P. J. & Adams, V. R. PD-1 pathway inhibitors: Immuno-oncology agents for restoring antitumor immune responses. Pharmacotherapy 36, 317–334 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Naidoo, J. et al. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann. Oncol. 26, 2375–2391 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Villadolid, J. & Amin, A. Immune checkpoint inhibitors in clinical practice: update on management of immune-related toxicities. Transl Lung Cancer Res. 4, 560–575 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Weber, J. S., Postow, M., Lao, C. D. & Schadendorf, D. Management of adverse events following treatment with anti-programmed death-1 agents. Oncologist 21, 1230–1240 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Mancini, S., Amorotti, E., Vecchio, S., Ponz de Leon, M. & Roncucci, L. Infliximab-related hepatitis: discussion of a case and review of the literature. Intern. Emerg. Med. 5, 193–200 (2010).

    Article  PubMed  Google Scholar 

  97. Merrill, S. P. et al. Early administration of infliximab for severe ipilimumab-related diarrhea in a critically ill patient. Ann. Pharmacother. 48, 806–810 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Pages, C. et al. Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Res. 23, 227–230 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Kim, C., Gao, J., Shannon, V. R. & Siefker-Radtke, A. Systemic sarcoidosis first manifesting in a tattoo in the setting of immune checkpoint inhibition. BMJ Case Rep. http://dx.doi.org/10.1136/bcr-2016-216217 (2016).

  100. Escudier, B. et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur. Urol. 72, 368–376 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Hodi, F. S. et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with pembrolizumab. J. Clin. Oncol. 34, 1510–1517 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chiou, V. L. & Burotto, M. Pseudoprogression and immune-related response in solid tumors. J. Clin. Oncol. 33, 3541–3543 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Imafuku, K., Hata, H., Kitamura, S., Yanagi, T. & Shimizu, H. Ultrasonographic findings can identify 'pseudoprogression' under nivolumab therapy. Br. J. Dermatol. http://dx.doi.org/10.1111/bjd.15198 (2016).

  106. Champiat, S. et al. Hyperprogressive disease is a new pattern of progression in cancer patients treated by anti-PD-1/PD-L1. Clin. Cancer Res. 23, 1920–1928 (2017).

    Article  CAS  PubMed  Google Scholar 

  107. Saada-Bouzid, E. et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. 28, 1605–1611 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. Kato, S. et al. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin. Cancer Res. 23, 4242–4250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McLaughlin, J. et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2, 46–54 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Callea, M. et al. Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol. Res. 3, 1158–1164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chalmers, Z. R. et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 9, 34 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Choi, W. et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25, 152–165 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bahce, I. et al. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer 107, 1–13 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Kikuchi, M. et al. Preclinical immunoPET/CT imaging using Zr-89-labeled anti-PD-L1 monoclonal antibody for assessing radiation-induced PD-L1 upregulation in head and neck cancer and melanoma. Oncoimmunology 6, e1329071 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  115. McConkey, D. J. et al. A prognostic gene expression signature in the molecular classification of chemotherapy-naive urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur. Urol. 69, 855–862 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Soushko and L. Hargett for editorial assistance, funded by Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Arlene Siefker-Radtke.

Ethics declarations

Competing interests

A.S.-R. declares associations with AstraZeneca, Bristol-Myers Squibb (BMS), Eisai, EMD Serono, Genentech, Janssen, Merck, Threshold Pharmaceuticals, Inovio, and Vertex as a member of the scientific advisory boards and has acted as a speaker and preceptor for Genentech. B.C. declares receipt of honoraria from Prometheus Pharmaceuticals; research funding from BMS, MedImmune, and Prometheus Pharmaceuticals; and funding for travel expenses from BMS, MedImmune, and Prometheus Pharmaceuticals.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siefker-Radtke, A., Curti, B. Immunotherapy in metastatic urothelial carcinoma: focus on immune checkpoint inhibition. Nat Rev Urol 15, 112–124 (2018). https://doi.org/10.1038/nrurol.2017.190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.190

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer