Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Rho GTPase signalling pathway in urothelial carcinoma

Key Points

  • The Rho GTPase family of enzymes is a diverse group of proteins that have critical roles in a number of cellular processes, including cell migration, cell polarity, cell adhesion, cell cycle progression, and regulation of the cytoskeleton. At present, transforming protein RhoA, Ras-related C3 botulinum toxin substrate 1 (Rac1), and cell division control protein 42 homologue (CDC42) are the best characterized

  • The processes that involve Rho GTPases are integral to the development, progression, and spread of malignancy, including urothelial carcinoma

  • The activity of these GTPases is regulated by a number of regulatory proteins, including guanine nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs), and, in certain classes of GTPases, guanine nucleotide exchange inhibitors (GDIs)

  • The growing understanding of Rho GTPase pathway regulation has resulted in identification of many potential drug targets in several cancers, including urothelial carcinoma. The most promising drug targets are those that inhibit Rho-associated protein kinase (ROCK), a downstream effector of RhoA

  • Most studies of the relationships between the Rho GTPase pathway and malignancy are being performed in preclinical models; the cell culture studies show promise, suggesting that activity levels of proteins are linked with disease characteristics and that inhibition of these proteins can have favourable effects on the disease phenotype

  • In vitro studies are promising, but this field is nascent and it remains to be seen whether manipulation of the Rho GTPase pathway can be a clinically useful anticancer tool. Rho GTPases are highly conserved proteins with considerable homology and complex regulatory processes, meaning considerable potential for off-target effects exists

Abstract

Urothelial carcinoma remains a clinical challenge: non-muscle-invasive disease has a high rate of recurrence and risk of progression, and outcomes for patients with advanced disease are poor, owing to a lack of effective systemic therapies. The Rho GTPase family of enzymes was first identified >30 years ago and contains >20 members, which are divided into eight subfamilies: Cdc42, Rac, Rho, RhoUV, RhoBTB, RhoDF, RhoH, and Rnd. Rho GTPases are molecular on–off switches, which are increasingly being understood to have a critical role in a number of cellular processes, including cell migration, cell polarity, cell adhesion, cell cycle progression, and regulation of the cytoskeleton. This switch is an evolutionarily conserved system in which GTPases alternate between GDP-bound (inactive) and GTP-bound (active) forms. The activities of these Rho GTPases are many, context-dependent, and regulated by a number of proteins that are being progressively elucidated. Aberrations of the Rho GTPase signalling pathways have been implicated in various malignancies, including urothelial carcinoma, and understanding of the role of Rho GTPases in these diseases is increasing. This signalling pathway has the potential for therapeutic targeting in urothelial carcinoma. Research in this area is nascent, and much work is necessary before current laboratory-based research can be translated into the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Types and stages of bladder cancer.
Figure 2: The Rho GTPase molecular switch and its regulators.
Figure 3: The Rho GTPase family.
Figure 4: Function of Rho-associated protein kinases (ROCKs).

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2016. CA Cancer J. Clinicians 66, 7–30 (2016).

    Article  Google Scholar 

  2. Sievert, K. D. et al. Economic aspects of bladder cancer: what are the benefits and costs? World J. Urol. 27, 295–300 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63, 234–241 (2013).

    Article  PubMed  Google Scholar 

  4. Czerniak, B., Dinney, C. & McConkey, D. Origins of bladder cancer. Annu. Rev. Pathol. 11, 149–174 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Pasin, E., Josephson, D. Y., Mitra, A. P., Cote, R. J. & Stein, J. P. Superficial bladder cancer: an update on etiology, molecular development, classification, and natural history. Rev. Urol. 10, 31–43 (2008).

    PubMed  PubMed Central  Google Scholar 

  6. Woldu, S. L., Bagrodia, A. & Lotan, Y. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int. 119, 371–380 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. O'Donnell, M. A. Advances in the management of superficial bladder cancer. Semin. Oncol. 34, 85–97 (2007).

    Article  PubMed  Google Scholar 

  8. Kurth, K. H. et al. Factors affecting recurrence and progression in superficial bladder tumours. Eur. J. Cancer 31a, 1840–1846 (1995).

  9. Heney, N. M. Natural history of superficial bladder cancer. Prognostic features and long-term disease course. Urol. Clin. North Am. 19, 429–433 (1992).

    CAS  PubMed  Google Scholar 

  10. Youssef, R. F. & Lotan, Y. Predictors of outcome of non-muscle-invasive and muscle-invasive bladder cancer. TheScientificWorldJournal 11, 369–381 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Abida, W., Bajorin, D. F. & Rosenberg, J. E. First-line treatment and prognostic factors of metastatic bladder cancer for platinum-eligible patients. Hematol. Oncol. Clin. North Am. 29, 319–328 (2015).

    Article  PubMed  Google Scholar 

  12. Saxman, S. B. et al. Long-term follow-up of a phase III intergroup study of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 15, 2564–2569 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. von der Maase, H. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J. Clin. Oncol. 18, 3068–3077 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Bellmunt, J. et al. Long-term survival results of a randomized phase III trial of vinflunine plus best supportive care versus best supportive care alone in advanced urothelial carcinoma patients after failure of platinum-based chemotherapy. Ann. Oncol. 24, 1466–1472 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sharma, P. et al. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol. 17, 1590–1598 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  18. Shariat, S. F. et al. Survivin as a prognostic marker for urothelial carcinoma of the bladder: a multicenter external validation study. Clin. Cancer Res. 15, 7012–7019 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Shariat, S. F. et al. p53 predictive value for pT1-2 N0 disease at radical cystectomy. J. Urol. 182, 907–913 (2009).

    Article  PubMed  Google Scholar 

  20. Shariat, S. F. et al. Prospective evaluation of a preoperative biomarker panel for prediction of upstaging at radical cystectomy. BJU Int. 113, 70–76 (2014).

    Article  PubMed  Google Scholar 

  21. Smith, S. C. et al. A 20-gene model for molecular nodal staging of bladder cancer: development and prospective assessment. Lancet Oncol. 12, 137–143 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Smith, S. C., Baras, A. S., Lee, J. K. & Theodorescu, D. The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res. 70, 1753–1758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jones, R. T., Felsenstein, K. M. & Theodorescu, D. Pharmacogenomics: Biomarker-directed therapy for bladder cancer. Urol. Clin. North Am. 43, 77–86 (2016).

    Article  PubMed  Google Scholar 

  24. Jordan, E. J. & Iyer, G. Targeted therapy in advanced bladder cancer: what have we learned? Urol. Clin. North Am. 42, 253–262 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim, J. W., Tomita, Y., Trepel, J. & Apolo, A. B. Emerging immunotherapies for bladder cancer. Curr. Opin. Oncol. 27, 191–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang, X. et al. Diphtheria toxin-epidermal growth factor fusion protein DAB389EGF for the treatment of bladder cancer. Clin. Cancer Res. 19, 148–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Vetter, I. R. & Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 294, 1299–1304 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wennerberg, K., Rossman, K. L. & Der, C. J. The Ras superfamily at a glance. J. Cell Sci. 118, 843–846 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Li, G. & Qian, H. Kinetic timing: a novel mechanism that improves the accuracy of GTPase timers in endosome fusion and other biological processes. Traffic 3, 249–255 (2002).

    Article  PubMed  Google Scholar 

  30. Coleman, D. E. et al. Structures of active conformations of Gi alpha 1 and the mechanism of GTP hydrolysis. Science 265, 1405–1412 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Prive, G. G. et al. X-Ray crystal structures of transforming p21 ras mutants suggest a transition-state stabilization mechanism for GTP hydrolysis. Proc. Natl Acad. Sci. USA 89, 3649–3653 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hoffman, G. R., Nassar, N. & Cerione, R. A. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI. Cell 100, 345–356 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Johnson, J. L., Erickson, J. W. & Cerione, R. A. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J. Biol. Chem. 284, 23860–23871 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hodge, R. G. & Ridley, A. J. Regulating Rho GTPases and their regulators. Nat. Rev. Mol. Cell Biol. 17, 496–510 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Isomura, M., Kikuchi, A., Ohga, N. & Takai, Y. Regulation of binding of rhoB p20 to membranes by its specific regulatory protein, GDP dissociation inhibitor. Oncogene 6, 119–124 (1991).

    CAS  PubMed  Google Scholar 

  36. Cherfils, J. & Zeghouf, M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol. Rev. 93, 269–309 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Boulter, E. et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat. Cell Biol. 12, 477–483 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tnimov, Z. et al. Quantitative analysis of prenylated RhoA interaction with its chaperone, RhoGDI. J. Biol. Chem. 287, 26549–26562 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trabalzini, L. & Retta, S. F. Ras Signaling: Methods and Protocols. (Humana Press, 2014).

    Book  Google Scholar 

  40. Madaule, P. & Axel, R. A novel ras-related gene family. Cell 41, 31–40 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Didsbury, J., Weber, R. F., Bokoch, G. M., Evans, T. & Snyderman, R. rac, a novel ras-related family of proteins that are botulinum toxin substrates. J. Biol. Chem. 264, 16378–16382 (1989).

    CAS  PubMed  Google Scholar 

  42. Boureux, A., Vignal, E., Faure, S. & Fort, P. Evolution of the Rho family of ras-like GTPases in eukaryotes. Mol. Biol. Evol. 24, 203–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hall, A. Rho family GTPases. Biochem. Soc. Trans. 40, 1378–1382 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, H. R. et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Ridley, A. J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Etienne-Manneville, S. & Hall, A. Rho GTPases in cell biology. Nature 420, 629–635 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Fernandez-Medarde, A. & Santos, E. Ras in cancer and developmental diseases. Genes Cancer 2, 344–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Price, L. S. & Collard, J. G. Regulation of the cytoskeleton by Rho-family GTPases: implications for tumour cell invasion. Semin. Cancer Biol. 11, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Forbes, S. A. et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Smithers, C. C. & Overduin, M. Structural mechanisms and drug discovery prospects of Rho GTPases. Cells 5, 26 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  52. Sakata-Yanagimoto, M. et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Yoo, H. Y. et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 371–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Porter, A. P., Papaioannou, A. & Malliri, A. Deregulation of Rho GTPases in cancer. Small GTPases 7, 123–138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S. & Der, C. J. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15, 6443–6453 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karlsson, R., Pedersen, E. D., Wang, Z. & Brakebusch, C. Rho GTPase function in tumorigenesis. Biochim. Biophys. Acta 1796, 91–98 (2009).

    CAS  PubMed  Google Scholar 

  57. Ridley, A. J. Rho proteins and cancer. Breast Cancer Res. Treat. 84, 13–19 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Fritz, G., Just, I. & Kaina, B. Rho GTPases are over-expressed in human tumors. Int. J. Cancer 81, 682–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Lawson, C. D. et al. Rho GTPase transcriptome analysis reveals oncogenic roles for Rho GTPase-activating proteins in basal-like breast cancers. Cancer Res. 76, 3826–3837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mazieres, J. et al. Loss of RhoB expression in human lung cancer progression. Clin. Cancer Res. 10, 2742–2750 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Sato, N. et al. RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line. Int. J. Cancer 120, 543–551 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Orgaz, J. L., Herraiz, C. & Sanz-Moreno, V. Rho GTPases modulate malignant transformation of tumor cells. Small GTPases 5, e29019 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arias-Romero, L. E. & Chernoff, J. Targeting Cdc42 in cancer. Expert Opin. Ther. Targets 17, 1263–1273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cook, D. R., Rossman, K. L. & Der, C. J. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 33, 4021–4035 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    Article  PubMed  Google Scholar 

  66. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Golovanov, A. P. et al. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI. J. Mol. Biol. 305, 121–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Scheffzek, K., Stephan, I., Jensen, O. N., Illenberger, D. & Gierschik, P. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI. Nat. Struct. Biol. 7, 122–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. DerMardirossian, C. & Bokoch, G. M. GDIs: central regulatory molecules in Rho GTPase activation. Trends Cell Biol. 15, 356–363 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Griner, E. M. et al. RhoC is an unexpected target of RhoGDI2 in prevention of lung colonization of bladder cancer. Mol. Cancer Res. 13, 483–492 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Said, N., Sanchez-Carbayo, M., Smith, S. C. & Theodorescu, D. RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. J. Clin. Invest. 122, 1503–1518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gildea, J. J. et al. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res. 62, 6418–6423 (2002).

    CAS  PubMed  Google Scholar 

  74. Harding, M. A. & Theodorescu, D. RhoGDI2: a new metastasis suppressor gene: discovery and clinical translation. Urol. Oncol. 25, 401–406 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Theodorescu, D. et al. Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer. Clin. Cancer Res. 10, 3800–3806 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Ahmed, M. et al. An osteopontin/CD44 axis in RhoGDI2-mediated metastasis suppression. Cancer Cell 30, 432–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahmed, M. et al. Osteopontin: a potentially important therapeutic target in cancer. Expert Opin. Ther. Targets 15, 1113–1126 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Weber, G. F., Ashkar, S. & Cantor, H. Interaction between CD44 and osteopontin as a potential basis for metastasis formation. Proc. Assoc. Am. Physicians 109, 1–9 (1997).

    CAS  PubMed  Google Scholar 

  79. Bourguignon, L. Y., Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Terawaki, S. et al. The PHCCEx domain of Tiam1/2 is a novel protein- and membrane-binding module. EMBO J. 29, 236–250 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Nobes, C. D. & Hall, A. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Michiels, F., Habets, G. G. M., Stam, J. C., van der Kammen, R. A. & Collard, J. G. A role for Rac in Tiaml-induced membrane ruffling and invasion. Nature 375, 338–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Sottnik, J. L. & Theodorescu, D. CD44: a metastasis driver and therapeutic target. Oncoscience 3, 320–321 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. Maisel, D. et al. Targeting tumor cells with anti-CD44 antibody triggers macrophage-mediated immune modulatory effects in a cancer xenograft model. PloS ONE 11, e0159716 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Riento, K. & Ridley, A. J. Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 4, 446–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. del Peso, L. et al. Rho proteins induce metastatic properties in vivo. Oncogene 15, 3047–3057 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Kamai, T. et al. Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin. Cancer Res. 9, 2632–2641 (2003).

    CAS  PubMed  Google Scholar 

  88. Kamai, T. et al. RhoA is associated with invasion and lymph node metastasis in upper urinary tract cancer. BJU Int. 91, 234–238 (2003).

    Article  CAS  PubMed  Google Scholar 

  89. Kamai, T. et al. Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer 10, 164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kumar, R., Gururaj, A. E. & Barnes, C. J. p21-activated kinases in cancer. Nat. Rev. Cancer 6, 459–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Balasenthil, S. et al. p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. J. Biol. Chem. 279, 1422–1428 (2004).

    Article  CAS  PubMed  Google Scholar 

  92. Ito, M. et al. P21-activated kinase 1: a new molecular marker for intravesical recurrence after transurethral resection of bladder cancer. J. Urol. 178, 1073–1079 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Redelman-Sidi, G., Iyer, G., Solit, D. B. & Glickman, M. S. Oncogenic activation of Pak1-dependent pathway of macropinocytosis determines BCG entry into bladder cancer cells. Cancer Res. 73, 1156–1167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gulhati, P. et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71, 3246–3256 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jacinto, E. et al. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122–1128 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Gupta, S. et al. Mammalian target of rapamycin complex 2 (mTORC2) is a critical determinant of bladder cancer invasion. PloS ONE 8, e81081 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zou, Z., Chen, J., Yang, J. & Bai, X. Targeted inhibition of Rictor/mTORC2 in cancer treatment: a new era after rapamycin. Curr. Cancer Drug Targets 16, 288–304 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. Gerullis, H. et al. A phase II trial of temsirolimus in second-line metastatic urothelial cancer. Med. Oncol. 29, 2870–2876 (2012).

    Article  CAS  PubMed  Google Scholar 

  99. Milowsky, M. I. et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int. 112, 462–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Seront, E. et al. Phase II study of everolimus in patients with locally advanced or metastatic transitional cell carcinoma of the urothelial tract: clinical activity, molecular response, and biomarkers. Ann. Oncol. 23, 2663–2670 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Hau, A. M., Nakasaki, M., Nakashima, K., Krish, G. & Hansel, D. E. Differential mTOR pathway profiles in bladder cancer cell line subtypes to predict sensitivity to mTOR inhibition. Urol. Oncol. 35, 593–599 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Wei, L., Surma, M., Shi, S., Lambert-Cheatham, N. & Shi, J. Novel insights into the roles of Rho kinase in cancer. Arch. Immunol. Ther. Exp. 64, 259–278 (2016).

    Article  CAS  Google Scholar 

  103. Uehata, M. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  104. Deng, L. et al. Rho-kinase inhibitor, fasudil, suppresses glioblastoma cell line progression in vitro and in vivo. Cancer Biol. Ther. 9, 875–884 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Xia, Y. et al. Rho kinase inhibitor fasudil suppresses the vasculogenic mimicry of B16 mouse melanoma cells both in vitro and in vivo. Mol. Cancer Ther. 14, 1582–1590 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Hinsenkamp, I. et al. Inhibition of Rho-associated kinase 1/2 attenuates tumor growth in murine gastric cancer. Neoplasia 18, 500–511 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Asano, T. et al. Mechanism of action of a novel antivasospasm drug, HA1077. J. Pharmacol. Exp. Ther. 241, 1033–1040 (1987).

    CAS  PubMed  Google Scholar 

  108. Asano, T. et al. Vasodilator actions of HA1077 in vitro and in vivo putatively mediated by the inhibition of protein kinase. Br. J. Pharmacol. 98, 1091–1100 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Abe, H. et al. The Rho-kinase inhibitor HA-1077 suppresses proliferation/migration and induces apoptosis of urothelial cancer cells. BMC Cancer 14, 412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chang, H. R. et al. The suppressive effect of Rho kinase inhibitor, Y-27632, on oncogenic Ras/RhoA induced invasion/migration of human bladder cancer TSGH cells. Chem. Biol. Interact. 183, 172–180 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Huang, H. P. et al. Y27632 attenuates the aristolochic acid-promoted invasion and migration of human urothelial cancer TSGH cells in vitro and inhibits the growth of xenografts in vivo. Nephrol. Dialysis Transplant. 27, 565–575 (2012).

    Article  CAS  Google Scholar 

  112. Rath, N. & Olson, M. F. Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep. 13, 900–908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tsai, C. C. et al. 7-Chloro-6-piperidin-1-yl-quinoline-5,8-dione (PT-262), a novel ROCK inhibitor blocks cytoskeleton function and cell migration. Biochem. Pharmacol. 81, 856–865 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Vigil, D. et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Res. 72, 5338–5347 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Patel, R. A. et al. RKI-1447 is a potent inhibitor of the Rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res. 72, 5025–5034 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Patel, R. A., Liu, Y., Wang, B., Li, R. & Sebti, S. M. Identification of novel ROCK inhibitors with anti-migratory and anti-invasive activities. Oncogene 33, 550–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Kale, V. P. et al. A novel selective multikinase inhibitor of ROCK and MRCK effectively blocks cancer cell migration and invasion. Cancer Lett. 354, 299–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. US National Library of Medicine. ClinicalTrials.gov http://clinicaltrials.gov/ct/show/NCT01585701 (2017).

  119. Lu, Q. Y. et al. Green tea extract modulates actin remodeling via Rho activity in an in vitro multistep carcinogenic model. Clin. Cancer Res. 11, 1675–1683 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Abiatari, I. et al. Consensus transcriptome signature of perineural invasion in pancreatic carcinoma. Mol. Cancer Ther. 8, 1494–1504 (2009).

    Article  CAS  PubMed  Google Scholar 

  121. Riechelmann, H. et al. Phase I trial with the CD44v6-targeting immunoconjugate bivatuzumab mertansine in head and neck squamous cell carcinoma. Oral Oncol. 44, 823–829 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Alchemia Limited Alchemia announces phase III trial results for HA-Irinotecan in metastatic colorectal cancer Marketwired.com (2014).

  123. Wennerberg, K. & Der, C. J. Rho-family GTPases: it's not only Rac and Rho (and I like it). J. Cell Sci. 117, 1301–1312 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Knowles, A. M. & Hurst, C. D. Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 15, 25–41 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Sanli, O. et al. Bladder Cancer. Nat. Rev. Dis. Primers 3, 17022 (2017).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.L.W., R.C.H., and L.-M.K. researched data for the article; S.L.W., R.C.H., O.S., and V.M. made substantial contributions to discussions of content; S.L.W. and R.C.H. wrote the article; and S.L.W., L.-M.K., O.S., and V.M. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Vitaly Margulis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woldu, S., Hutchinson, R., Krabbe, LM. et al. The Rho GTPase signalling pathway in urothelial carcinoma. Nat Rev Urol 15, 83–91 (2018). https://doi.org/10.1038/nrurol.2017.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.184

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer