Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The anti-PD-1 era — an opportunity to enhance radiotherapy for patients with bladder cancer

Abstract

An urgent need exists to improve the outcomes of patients with muscle-invasive bladder cancer (MIBC), and especially of those with metastatic disease. Treatments that enhance antitumour immune responses — such as immune-checkpoint inhibition — provide an opportunity to do this. Despite initial success, durable response rates in patients with advanced-stage MIBC treated with novel inhibitory antibodies targeting programmed cell death protein 1 (PD-1) or its endogenous ligand programmed cell death 1 ligand 1 (PD-L1) remain low. Radiotherapy is part of the management of bladder cancer in many patients. Evidence that radiotherapy has immunogenic properties is now available, but radiotherapy-induced immune responses are often negated by immunosuppression within the tumour microenvironment. Anti-PD-1 or anti-PD-L1 antibodies might enhance radiotherapy-induced antitumour immunity. This effect has been demonstrated in preclinical models of bladder cancer, and clinical trials involving this approach are currently recruiting. Combination treatment strategies provide an exciting opportunity for urological oncologists to not only improve the chances of cure in patients undergoing radical treatment for MIBC, but also to increase long-term response rates in those with metastatic disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunogenic effects of radiotherapy.
Figure 2: Effects of anti-PD-1 or anti-PD-L1 antibodies on antitumour immunity.

Similar content being viewed by others

References

  1. Cancer Research UK. Bladder cancer statistics. CRUK www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/bladder-cancer (2014).

  2. National Institute for Health and Care Excellence. Bladder cancer: diagnosis and management. NICE https://www.nice.org.uk/guidance/NG2 (2015).

  3. Advanced Bladder Cancer Meta-analysis Collaboration. Neoadjuvant chemotherapy in invasive bladder cancer: a systematic review and meta-analysis. Lancet 361, 1927–1934 (2003).

  4. von der Maase, H. et al. Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J. Clin. Oncol. 23, 4602–4608 (2005).

    Article  CAS  Google Scholar 

  5. Bellmunt, J. et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J. Clin. Oncol. 27, 4454–4461 (2009).

    Article  CAS  Google Scholar 

  6. Apolo, A. B. et al. Updated efficacy and safety of avelumab in metastatic urothelial carcinoma (mUC): pooled analysis from 2 cohorts of the phase 1b Javelin solid tumor study. J. Clin. Oncol. 35 (Suppl. 15), 4528 (2017).

    Article  Google Scholar 

  7. Balar, A. V. et al. Pembrolizumab as first-line therapy in cisplatin-ineligible advanced urothelial cancer: results from the total KEYNOTE-052 study population. J. Clin. Oncol. 35 (Suppl. 6), 284 (2017).

    Article  Google Scholar 

  8. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  Google Scholar 

  9. Bellmunt, J. et al. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N. Engl. J. Med. 376, 1015–1026 (2017).

    Article  CAS  Google Scholar 

  10. Hahn, N. M. et al. Updated efficacy and tolerability of durvalumab in locally advanced or metastatic urothelial carcinoma (UC). J. Clin. Oncol. 35 (Suppl. 15), 4525 (2017).

    Article  Google Scholar 

  11. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  Google Scholar 

  12. Sharma, P. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol. 18, 312–322 (2017).

    Article  CAS  Google Scholar 

  13. Burnette, B. C. et al. The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res. 71, 2488–2496 (2011).

    Article  CAS  Google Scholar 

  14. Fuertes, M. B. et al. Host type I IFN signals are required for antitumor CD8+ T cell responses through CD8{alpha}+ dendritic cells. J. Exp. Med. 208, 2005–2016 (2011).

    Article  CAS  Google Scholar 

  15. Gasser, S., Orsulic, S., Brown, E. J. & Raulet, D. H. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436, 1186–1190 (2005).

    Article  CAS  Google Scholar 

  16. Gupta, A. et al. Radiotherapy promotes tumor-specific effector CD8+ T cells via dendritic cell activation. J. Immunol. 189, 558–566 (2012).

    Article  CAS  Google Scholar 

  17. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  CAS  Google Scholar 

  18. Reits, E. A. et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J. Exp. Med. 203, 1259–1271 (2006).

    Article  CAS  Google Scholar 

  19. Stangl, S. et al. Detection of irradiation-induced, membrane heat shock protein 70 (Hsp70) in mouse tumors using Hsp70 Fab fragment. Radiother. Oncol. 99, 313–316 (2011).

    Article  CAS  Google Scholar 

  20. Surace, L. et al. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity 42, 767–777 (2015).

    Article  CAS  Google Scholar 

  21. Suzuki, Y. et al. Immunogenic tumor cell death induced by chemoradiotherapy in patients with esophageal squamous cell carcinoma. Cancer Res. 72, 3967–3976 (2012).

    Article  CAS  Google Scholar 

  22. Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. J. Urol. 116, 180–183 (1976).

    Article  CAS  Google Scholar 

  23. Han, R. F. & Pan, J. G. Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology 67, 1216–1223 (2006).

    Article  Google Scholar 

  24. Shelley, M. D. et al. A systematic review of intravesical bacillus Calmette-Guerin plus transurethral resection versus transurethral resection alone in Ta and T1 bladder cancer. BJU Int. 88, 209–216 (2001).

    Article  CAS  Google Scholar 

  25. Sylvester, R. J., van der M. A. & Lamm, D. L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol. 168, 1964–1970 (2002).

    Article  CAS  Google Scholar 

  26. Babjuk, M. et al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur. Urol. 59, 997–1008 (2011).

    Article  Google Scholar 

  27. Redelman-Sidi, G., Glickman, M. S. & Bochner, B. H. The mechanism of action of BCG therapy for bladder cancer—a current perspective. Nat. Rev. Urol. 11, 153–162 (2014).

    Article  CAS  Google Scholar 

  28. Kelley, D. R. et al. Prognostic value of purified protein derivative skin test and granuloma formation in patients treated with intravesical bacillus Calmette-Guerin. J. Urol. 135, 268–271 (1986).

    Article  CAS  Google Scholar 

  29. Taniguchi, K. et al. Systemic immune response after intravesical instillation of bacille Calmette-Guérin (BCG) for superficial bladder cancer. Clin. Exp. Immunol. 115, 131–135 (1999).

    Article  CAS  Google Scholar 

  30. Witjes, J. A. et al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol. 65, 778–792 (2014).

    Article  Google Scholar 

  31. Hall, E. J. & Giaccia, A. J. Radiobiology for the Radiologist 6th edn (Lippincott Williams & Wilkins, 2006).

    Google Scholar 

  32. Albert, M. L., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  33. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007).

    Article  CAS  Google Scholar 

  34. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  Google Scholar 

  35. Sellers, D. J. & McKay, N. Developments in the pharmacotherapy of the overactive bladder. Curr. Opin. Urol. 17, 223–230 (2007).

    Article  Google Scholar 

  36. D'Eliseo, D., Manzi, L. & Velotti, F. Capsaicin as an inducer of damage-associated molecular patterns (DAMPs) of immunogenic cell death (ICD) in human bladder cancer cells. Cell Stress Chaperones. 18, 801–808 (2013).

    Article  CAS  Google Scholar 

  37. Casares, N. et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J. Exp. Med. 202, 1691–1701 (2005).

    Article  CAS  Google Scholar 

  38. Loehrer, P. J. et al. A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J. Clin. Oncol. 10, 1066–1073 (1992).

    Article  Google Scholar 

  39. Sternberg, C. N. et al. Randomized phase III trial of high-dose-intensity methotrexate, vinblastine, doxorubicin, and cisplatin (MVAC) chemotherapy and recombinant human granulocyte colony-stimulating factor versus classic MVAC in advanced urothelial tract tumors: European Organization for Research and Treatment of Cancer Protocol no. 30924. J. Clin. Oncol. 19, 2638–2646 (2001).

    Article  CAS  Google Scholar 

  40. Kepp, O. et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 3, e955691 (2014).

    Article  Google Scholar 

  41. Cambier, S. et al. EORTC nomograms and risk groups for predicting recurrence, progression, and disease-specific and overall survival in non-muscle-invasive stage Ta-T1 urothelial bladder cancer patients treated with 1–3 years of maintenance Bacillus Calmette-Guérin. Eur. Urol. 69, 60–69 (2016).

    Article  Google Scholar 

  42. Caffo, O. et al. Concurrent gemcitabine and radiotherapy for the treatment of muscle-invasive bladder cancer: a pooled individual data analysis of eight phase I-II trials. Radiother. Oncol. 21, 193–198 (2016).

    Article  Google Scholar 

  43. James, N. D. et al. Radiotherapy with or without chemotherapy in muscle-invasive bladder cancer. N. Engl. J. Med. 366, 1477–1488 (2012).

    Article  CAS  Google Scholar 

  44. Siva, S., MacManus, M. P., Martin, R. F. & Martin, O. A. Abscopal effects of radiation therapy: a clinical review for the radiobiologist. Cancer Lett. 356, 82–90 (2015).

    Article  CAS  Google Scholar 

  45. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  Google Scholar 

  46. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  Google Scholar 

  47. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    Article  CAS  Google Scholar 

  48. Lee, I. et al. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J. Exp. Med. 201, 1037–1044 (2005).

    Article  CAS  Google Scholar 

  49. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  Google Scholar 

  50. Kono, K. et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol. Immunother. 55, 1064–1071 (2006).

    Article  CAS  Google Scholar 

  51. Zhang, Q. W. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7, e50946 (2012).

    Article  CAS  Google Scholar 

  52. Khanna, R. Tumour surveillance: missing peptides and MHC molecules. Immunol. Cell Biol. 76, 20–26 (1998).

    Article  CAS  Google Scholar 

  53. Paulson, K. G. et al. Downregulation of MHC-I expression is prevalent but reversible in Merkel cell carcinoma. Cancer Immunol. Res. 2, 1071–1079 (2014).

    Article  CAS  Google Scholar 

  54. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  Google Scholar 

  55. Taube, J. M. et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4, 127ra137 (2012).

    Article  Google Scholar 

  56. Brahmer, J. et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N. Engl. J. Med. 373, 123–135 (2015).

    Article  CAS  Google Scholar 

  57. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  Google Scholar 

  58. Robert, C. et al. Nivolumab in previously untreated melanoma without BRAF mutation. N. Engl. J. Med. 372, 320–330 (2015).

    Article  CAS  Google Scholar 

  59. Roche. Media release. Roche http://www.roche.com/media/store/releases/med-cor-2017-05-10.htm (2017).

  60. Heo, J. H. et al. Abstract A16: expression of PD-L1 and BCG immunotherapy in non-muscle invasive bladder cancer [abstract]. Cancer Res. 76, A16 (2016).

    Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02324582 (2017).

  62. Deng, L. et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J. Clin. Invest. 124, 687–695 (2014).

    Article  CAS  Google Scholar 

  63. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  CAS  Google Scholar 

  64. Wu, C. T., Chen, W. C., Chang, Y. H., Lin, W. Y. & Chen, M. F. The role of PD-L1 in the radiation response and clinical outcome for bladder cancer. Sci. Rep. 6, 19740 (2016).

    Article  CAS  Google Scholar 

  65. Chan, E. S. et al. Optimizing orthotopic bladder tumor implantation in a syngeneic mouse model. J. Urol. 182, 2926–2931 (2009).

    Article  Google Scholar 

  66. Zhang, N., Li, D., Shao, J. & Wang, X. Animal models for bladder cancer: the model establishment and evaluation (review). Oncol. Lett. 9, 1515–1519 (2015).

    Article  CAS  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02560636 (2016).

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02621151 (2017).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02662062 (2017).

  70. Hoskin, P. J., Rojas, A. M., Bentzen, S. M. & Saunders, M. I. Radiotherapy with concurrent carbogen and nicotinamide in bladder carcinoma. J. Clin. Oncol. 28, 4912–4918 (2010).

    Article  Google Scholar 

  71. Murray, L. et al. Stereotactic ablative radiotherapy (SABR) in patients with medically inoperable peripheral early stage lung cancer: outcomes for the first UK SABR cohort. Clin. Oncol. (R. Coll. Radiol) 28, 4–12 (2016).

    Article  CAS  Google Scholar 

  72. SABR UK Consortium. Stereotactic ablative body radiation therapy (SABR): a resource. Action Radiotherapy http://www.actionradiotherapy.org/wp-content/uploads/2016/02/UKSABRConsortiumGuidelinesv51.pdf (2016).

  73. Filatenkov, A. et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin. Cancer. Res. 21, 3727–3739 (2015).

    Article  CAS  Google Scholar 

  74. Sharabi, A. B. et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol. Res. 3, 345–355 (2015).

    Article  CAS  Google Scholar 

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02826564 (2016).

  76. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02447549 (2017).

  77. Søndergaard, J. et al. A comparison of morbidity following conformal versus intensity-modulated radiotherapy for urinary bladder cancer. Acta Oncol. 53, 1321–1328 (2014).

    Article  Google Scholar 

  78. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  Google Scholar 

  79. Liniker, E. et al. Activity and safety of radiotherapy with anti-PD-1 drug therapy in patients with metastatic melanoma. Oncoimmunology 5, e1214788 (2016).

    Article  CAS  Google Scholar 

  80. Carbognin, L. et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS ONE 10, e0130142 (2015).

    Article  Google Scholar 

  81. Bellmunt, J. et al. Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Ann. Oncol. 26, 812–817 (2015).

    Article  CAS  Google Scholar 

  82. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  Google Scholar 

  83. Rizvi, N. A. et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  Google Scholar 

  84. The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507, 315–322 (2014).

  85. Tokito, T. et al. Predictive relevance of PD-L1 expression combined with CD8+ TIL density in stage III non-small cell lung cancer patients receiving concurrent chemoradiotherapy. Eur. J. Cancer 55, 7–14 (2016).

    Article  CAS  Google Scholar 

  86. Choudhury, A. et al. MRE11 expression is predictive of cause-specific survival following radical radiotherapy for muscle-invasive bladder cancer. Cancer Res. 70, 7017–7026 (2010).

    Article  CAS  Google Scholar 

  87. Eustace, A. et al. Necrosis predicts benefit from hypoxia-modifying therapy in patients with high risk bladder cancer enrolled in a phase III randomised trial. Radiother. Oncol. 108, 40–47 (2013).

    Article  Google Scholar 

  88. US National Library of Medicine. ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT03115801 (2017).

Download references

Acknowledgements

R.W. researched data for this article, R.W. and J.H. made a substantial contribution to discussions of content, R.W. wrote the manuscript, and J.H., T.I., and A.C. edited and/or reviewed the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

R.W. researched data for this article, R.W. and J.H. made a substantial contribution to discussions of content, R.W. wrote the manuscript, and J.H., T.I., and A.C. edited and/or reviewed the manuscript before submission.

Corresponding author

Correspondence to Ananya Choudhury.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walshaw, R., Honeychurch, J., Illidge, T. et al. The anti-PD-1 era — an opportunity to enhance radiotherapy for patients with bladder cancer. Nat Rev Urol 15, 251–259 (2018). https://doi.org/10.1038/nrurol.2017.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.172

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing