Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Improving outcomes in high-risk, nonmetastatic renal cancer: new data and ongoing trials

Abstract

High-risk, localized renal cancer is associated with recurrence rates of up to 75% at 10 years. The outcomes of patients at this disease stage depend on optimal patient stratification, surgical management and systemic therapy selection. Current evidence does not support the use of adjuvant therapy in patients with high-risk, localized disease. During the past 12 months, the results of large, randomized-controlled trials of adjuvant tyrosine kinase inhibitor (TKI) treatment, such as ASSURE and S-TRAC, have been published, but their findings are conflicting. Whether TKIs will become standard of care in the adjuvant setting depends on the long-term data from ongoing trials. In addition, several new trials that evaluate the utility of novel immune checkpoint inhibitors in this patient group are currently recruiting. The management of renal cancer is likely to evolve at a rapid pace over the next few years and matching patients with the appropriate therapeutic regimen is likely to be a focus of future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trials of adjuvant targeted treatments in renal cancer.

References

  1. Ljungberg, B. et al. The epidemiology of renal cell carcinoma. Eur. Urol. 60, 615–621 (2011).

    Article  Google Scholar 

  2. Lee, C. T., Katz, J., Fearn, P. A. & Russo, P. Mode of presentation of renal cell carcinoma provides prognostic information. Urol. Oncol. 7, 135–140 (2002).

    Article  Google Scholar 

  3. Gupta, K., Miller, J. D., Li, J. Z., Russell, M. W. & Charbonneau, C. Epidemiologic and socioeconomic burden of metastatic renal cell carcinoma (mRCC): a literature review. Cancer Treat. Rev. 34, 193–205 (2008).

    Article  Google Scholar 

  4. Kirkali, Z. & Van Poppel, H. A critical analysis of surgery for kidney cancer with vena cava invasion. Eur. Urol. 52, 658–662 (2007).

    Article  Google Scholar 

  5. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003).

    Article  Google Scholar 

  6. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur. Urol. 67, 913–924 (2015).

    Article  Google Scholar 

  7. Abel, E. J. et al. Risk factors for recurrence after surgery in non-metastatic RCC with thrombus: a contemporary multicentre analysis. BJU Int. 117, E87–E94 (2015).

    Article  Google Scholar 

  8. Sorbellini, M. et al. A postoperative prognostic nomogram predicting recurrence for patients with conventional clear cell renal cell carcinoma. J. Urol. 173, 48–51 (2005).

    Article  Google Scholar 

  9. Kattan, M. W., Reuter, V., Motzer, R. J., Katz, J. & Russo, P. A postoperative prognostic nomogram for renal cell carcinoma. J. Urol. 166, 63–67 (2001).

    Article  CAS  Google Scholar 

  10. Powles, T. et al. Updated EAU guidelines for clear cell renal cancer patients who fail VEGF targeted therapy. Eur. Urol. 69, 4–6 (2015).

    Article  Google Scholar 

  11. Motzer, R. J. & Bukowski, R. M. Targeted therapy for metastatic renal cell carcinoma. J. Clin. Oncol. 24, 5601–5608 (2006).

    Article  CAS  Google Scholar 

  12. Bracarda, S. et al. Overall survival in patients with metastatic renal cell carcinoma initially treated with bevacizumab plus interferon-alpha2a and subsequent therapy with tyrosine kinase inhibitors: a retrospective analysis of the phase III AVOREN trial. BJU Int. 107, 214–219 (2011).

    Article  CAS  Google Scholar 

  13. Behrens, A. et al. Impaired intervertebral disc formation in the absence of Jun. Development 130, 103–109 (2003).

    Article  CAS  Google Scholar 

  14. Zisman, A. et al. Risk group assessment and clinical outcome algorithm to predict the natural history of patients with surgically resected renal cell carcinoma. J. Clin. Oncol. 20, 4559–4566 (2002).

    Article  Google Scholar 

  15. Karam, J. A. et al. Phase 2 trial of neoadjuvant axitinib in patients with locally advanced nonmetastatic clear cell renal cell carcinoma. Eur. Urol. 66, 874–880 (2014).

    Article  CAS  Google Scholar 

  16. Silberstein, J. L. et al. Feasibility and efficacy of neoadjuvant sunitinib before nephron-sparing surgery. BJU Int. 106, 1270–1276 (2010).

    Article  Google Scholar 

  17. Robson, C. J., Churchill, B. M. & Anderson, W. The results of radical nephrectomy for renal cell carcinoma. J. Urol. 101, 297–301 (1969).

    Article  CAS  Google Scholar 

  18. O'Malley, R. L., Godoy, G., Kanofsky, J. A. & Taneja, S. S. The necessity of adrenalectomy at the time of radical nephrectomy: a systematic review. J. Urol. 181, 2009–2017 (2009).

    Article  Google Scholar 

  19. Paul, R., Mordhorst, J., Busch, R., Leyh, H. & Hartung, R. Adrenal sparing surgery during radical nephrectomy in patients with renal cell cancer: a new algorithm. J. Urol. 166, 59–62 (2001).

    Article  CAS  Google Scholar 

  20. De Sio, M. et al. Adrenalectomy: defining its role in the surgical treatment of renal cell carcinoma. Urol. Int. 71, 361–367 (2003).

    Article  Google Scholar 

  21. Gabr, A. H., Steinberg, Z., Eggener, S., E. & Stuart Wolf, J. Jr. Indications for adrenalectomy during radical nephrectomy for renal cancer. Arab J. Urol. 12, 304–308 (2014).

    Article  Google Scholar 

  22. Blom, J. H. et al. Radical nephrectomy with and without lymph-node dissection: final results of European Organization for Research and Treatment of Cancer (EORTC) randomized phase 3 trial 30881. Eur. Urol. 55, 28–34 (2009).

    Article  Google Scholar 

  23. Capitanio, U. et al. Extent of lymph node dissection at nephrectomy affects cancer-specific survival and metastatic progression in specific sub-categories of patients with renal cell carcinoma (RCC). BJU Int. 114, 210–215 (2014).

    Article  Google Scholar 

  24. Stewart, G. D. et al. Cytoreductive nephrectomy in the tyrosine kinase inhibitor era: a question that may never be answered. Eur. Urol. 71, 845–847 (2017).

    Article  Google Scholar 

  25. Tan, M. H. et al. Comparison of the UCLA Integrated Staging System and the Leibovich score in survival prediction for patients with nonmetastatic clear cell renal cell carcinoma. Urology 75, 1365–1370.e3 (2010).

    Article  Google Scholar 

  26. Galsky, M. D. A prognostic model for metastatic renal-cell carcinoma. Lancet Oncol. 14, 102–103 (2013).

    Article  Google Scholar 

  27. Klatte, T. et al. Molecular signatures of localized clear cell renal cell carcinoma to predict disease-free survival after nephrectomy. Cancer Epidemiol. Biomarkers Prev. 18, 894–900 (2009).

    Article  CAS  Google Scholar 

  28. Jiang, Z. et al. Oncofetal protein IMP3: a novel molecular marker that predicts metastasis of papillary and chromophobe renal cell carcinomas. Cancer 112, 2676–2682 (2008).

    Article  Google Scholar 

  29. Crispen, P. L., Boorjian, S. A., Lohse, C. M., Leibovich, B. C. & Kwon, E. D. Predicting disease progression after nephrectomy for localized renal cell carcinoma: the utility of prognostic models and molecular biomarkers. Cancer 113, 450–460 (2008).

    Article  Google Scholar 

  30. Thompson, R. H. et al. Costimulatory B7-H1 in renal cell carcinoma patients: indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA 101, 17174–17179 (2004).

    Article  CAS  Google Scholar 

  31. Jilaveanu, L. B. et al. PD-L1 expression in clear cell renal cell carcinoma: an analysis of nephrectomy and sites of metastases. J. Cancer 5, 166–172 (2014).

    Article  CAS  Google Scholar 

  32. Bluemke, K. et al. Detection of circulating tumor cells in peripheral blood of patients with renal cell carcinoma correlates with prognosis. Cancer Epidemiol. Biomarkers Prev. 18, 2190–2194 (2009).

    Article  CAS  Google Scholar 

  33. Kowalik, C. G. et al. Profiling microRNA from nephrectomy and biopsy specimens: predictors of progression and survival in clear cell renal cell carcinoma. BJU Int. http://dx.doi.org/10.1111/bju.13886 (2017).

  34. Kim, H. L. et al. A molecular model for predicting overall survival in patients with metastatic clear cell renal carcinoma: results from CALGB 90206 (Alliance). EBioMedicine 2, 1814–1820 (2015).

    Article  Google Scholar 

  35. Brooks, S. A. et al. ClearCode34: a prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    Article  CAS  Google Scholar 

  36. Rini, B. et al. A 16-gene assay to predict recurrence after surgery in localised renal cell carcinoma: development and validation studies. Lancet Oncol. 16, 676–685 (2015).

    Article  CAS  Google Scholar 

  37. Jocham, D. et al. Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363, 594–599 (2004).

    Article  CAS  Google Scholar 

  38. May, M. et al. Adjuvant autologous tumour cell vaccination in patients with renal cell carcinoma. Overall survival analysis with a follow-up period in excess of more than 10 years [German]. Urologe A 48, 1075–1083 (2009).

    Article  CAS  Google Scholar 

  39. Jonasch, E. et al. Vaccination of metastatic renal cell carcinoma patients with autologous tumour-derived vitespen vaccine: clinical findings. Br. J. Cancer 98, 1336–1341 (2008).

    Article  CAS  Google Scholar 

  40. Rivoltini, L. et al. Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma- and colon carcinoma-specific T cells. J. Immunol. 171, 3467–3474 (2003).

    Article  CAS  Google Scholar 

  41. Wood, C. et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372, 145–154 (2008).

    Article  CAS  Google Scholar 

  42. Scherr, A. J., Lima, J. P., Sasse, E. C., Lima, C. S. & Sasse, A. D. Adjuvant therapy for locally advanced renal cell cancer: a systematic review with meta-analysis. BMC Cancer 11, 115 (2011).

    Article  Google Scholar 

  43. Messing, E. M. et al. Phase III study of interferon alfa-NL as adjuvant treatment for resectable renal cell carcinoma: an Eastern Cooperative Oncology Group/Intergroup trial. J. Clin. Oncol. 21, 1214–1222 (2003).

    Article  CAS  Google Scholar 

  44. Pizzocaro, G. et al. Interferon adjuvant to radical nephrectomy in Robson stages II and III renal cell carcinoma: a multicentric randomized study. J. Clin. Oncol. 19, 425–431 (2001).

    Article  CAS  Google Scholar 

  45. Passalacqua, R. et al. Adjuvant low-dose interleukin-2 (IL-2) plus interferon-alpha (IFN-alpha) in operable renal cell carcinoma (RCC): a phase III, randomized, multicentre trial of the Italian Oncology Group for Clinical Research (GOIRC). J. Immunother. 37, 440–447 (2014).

    Article  CAS  Google Scholar 

  46. Tostain, J., Li, G., Gentil-Perret, A. & Gigante, M. Carbonic anhydrase 9 in clear cell renal cell carcinoma: a marker for diagnosis, prognosis and treatment. Eur. J. Cancer 46, 3141–3148 (2010).

    Article  CAS  Google Scholar 

  47. Belldegrun, A. S. et al. ARISER: a randomized double blind phase III study to evaluate adjuvant cG250 treatment versus placebo in patients with high-risk ccRCC: results and implications for adjuvant clinical trials [abstract]. J. Clin. Oncol. 31 (Suppl.), a4507 (2013).

    Google Scholar 

  48. Chamie, K. et al. Carbonic anhydrase-IX score is a novel biomarker that predicts recurrence and survival for high-risk, nonmetastatic renal cell carcinoma: data from the phase III ARISER clinical trial. Urol. Oncol. 33, 204.e25–204.e33 (2015).

    Article  CAS  Google Scholar 

  49. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  Google Scholar 

  50. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    Article  CAS  Google Scholar 

  51. Escudier, B. et al. Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES Study. J. Clin. Oncol. 32, 1412–1418 (2014).

    Article  CAS  Google Scholar 

  52. Escudier, B. et al. Axitinib versus sorafenib in advanced renal cell carcinoma: subanalyses by prior therapy from a randomised phase III trial. Br. J. Cancer 110, 2821–2828 (2014).

    Article  CAS  Google Scholar 

  53. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  Google Scholar 

  54. Haas, N. B. et al. Effects of adjuvant sorafenib and sunitinib on cardiac function in renal cell carcinoma patients without overt metastases: results from ASSURE, ECOG 2805. Clin. Cancer Res. 21, 4048–4054 (2015).

    Article  CAS  Google Scholar 

  55. Haas, N. B. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet (2016).

  56. Ravaud, A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 375, 2246–2254 (2016).

    Article  CAS  Google Scholar 

  57. Gyawali, B. & Ando, Y. Adjuvant sunitinib for high-risk-resected renal cell carcinoma: a meta-analysis of ASSURE and S-TRAC trials. Ann. Oncol. 28, 898–899 (2017).

    CAS  PubMed  Google Scholar 

  58. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00492258 (2013).

  59. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01235962 (2017).

  60. Motzer, R. J. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with locally advanced renal cell carcinoma (RCC) (PROTECT) [abstract]. J. Clin. Oncol. 35 (Suppl.), 4507 (2017).

    Article  Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01120249 (2016).

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01599754 (2017).

  63. Callea, M. et al. Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol. Res. 3, 1158–1164 (2015).

    Article  CAS  Google Scholar 

  64. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  Google Scholar 

  65. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    Article  CAS  Google Scholar 

  66. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00057889 (2012).

  67. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03055013 (2017).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03024996 (2017).

  70. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03142334 (2017).

  71. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02212730 (2017).

  72. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02575222 (2017).

  73. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02762006 (2017).

  74. Amin, A. et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC) [abstract]. J. Clin. Oncol. 32 (Suppl.), 5010 (2014).

    Article  Google Scholar 

  75. Hammers, H. J. Expanded cohort results from CheckMate 016: a phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC) [abstract]. J. Clin. Oncol. 33 (Suppl. 15), 4516 (2015).

    Article  Google Scholar 

  76. Jedeszko, C. et al. Postsurgical adjuvant or metastatic renal cell carcinoma therapy models reveal potent antitumor activity of metronomic oral topotecan with pazopanib. Sci. Transl Med. 7, 282ra50 (2015).

    Article  Google Scholar 

  77. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02853331 (2017).

  78. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00326898 (2016).

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00375674 (2016).

Download references

Author information

Authors and Affiliations

Authors

Contributions

C.B. researched data for the article. C.B. and G.S. wrote the manuscript. C.B., G.S., and T.E. made substantial contributions to discussion of the article's content. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Chris Blick.

Ethics declarations

Competing interests

T.E. is a paid employee of Astra Zeneca. G.D.S. has received educational grants, speaker's fees, and travel grants from Pfizer.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blick, C., Ritchie, A., Eisen, T. et al. Improving outcomes in high-risk, nonmetastatic renal cancer: new data and ongoing trials. Nat Rev Urol 14, 753–759 (2017). https://doi.org/10.1038/nrurol.2017.123

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2017.123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing