Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of glycans in the development and progression of prostate cancer

Key Points

  • Glycosylation is a key cellular mechanism regulating many important biological processes in cancer; alterations in glycosylation patterns are common features of cancer cells

  • The prostate is a secretory gland with an important role in male fertility, and as such, is an abundant secretor of glycoproteins of all types

  • A variety of alterations in glycoproteins have been observed in prostate cancer cells including: increased sialylation and fucosylation; increased O-β-N-acetylglucosylation; the emergence of cryptic and high-mannose N-glycans and proteoglycan alterations

  • Glycosylation-specific antibodies and glycosylation gene signatures have proven to be powerful tools in classifying prostate cancer tumour aggressiveness

  • Glycans have potential clinical applications in patients with prostate cancer as both predictive and prognostic biomarkers and therapeutic targets

Abstract

Prostate cancer is a unique and heterogeneous disease. Currently, a major unmet clinical need exists to develop biomarkers that enable indolent disease to be distinguished from aggressive disease. The prostate is an abundant secretor of glycoproteins of all types, and alterations in glycans are, therefore, attractive as potential biomarkers and therapeutic targets. Despite progress over the past decade in profiling the genome and proteome, the prostate cancer glycoproteome remains relatively understudied. A wide range of alterations in the glycoproteins on prostate cancer cells can occur, including increased sialylation and fucosylation, increased O-β-N-acetylglucosamine (GlcNAc) conjugation, the emergence of cryptic and high-mannose N-glycans and alterations to proteoglycans. Glycosylation can alter protein function and has a key role in many important biological processes in cancer including cell adhesion, migration, interactions with the cell matrix, immune surveillance, cell signalling and cellular metabolism; altered glycosylation in prostate cancer might modify some, or all of these processes. In the past three years, powerful tools such as glycosylation-specific antibodies and glycosylation gene signatures have been developed, which enable detailed analyses of changes in glycosylation. Thus, emerging data on these often overlooked modifications have the potential to improve risk stratification and therapeutic strategies in patients with prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative mammalian O-linked and N-linked glycans.
Figure 2: The four most common biantennary N-linked glycan structures detected on PSA asparagine-69.
Figure 3: Schematic representation of glycan structures produced by incomplete and/or neo-synthesis.
Figure 4: Induction of the cancer-associated sialyl-Tn (sTn) antigen by androgens in prostate cancer cells.
Figure 5: Structural examples of branched and cryptic N-glycans detected in prostate cancer tissue samples.
Figure 6: The hexosamine biosynthetic pathway (HBP).

Similar content being viewed by others

References

  1. Klotz, L. & Emberton, M. Management of low risk prostate cancer-active surveillance and focal therapy. Nat. Rev. Clin. Oncol. 11, 324–334 (2014).

    PubMed  Google Scholar 

  2. Humphrey, P. A. Gleason grading and prognostic factors in carcinoma of the prostate. Mod. Pathol. 17, 292–306 (2004).

    PubMed  Google Scholar 

  3. Massie, C. E. et al. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J. 30, 2719–2733 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma, N. L. et al. The androgen receptor induces a distinct transcriptional program in castration-resistant prostate cancer in man. Cancer Cell 23, 35–47 (2013).

    CAS  PubMed  Google Scholar 

  5. Mills, I. G. Maintaining and reprogramming genomic androgen receptor activity in prostate cancer. Nat. Rev. Cancer 14, 187–198 (2014).

    CAS  PubMed  Google Scholar 

  6. Stray-Pedersen, A. et al. PGM3 mutations cause a congenital disorder of glycosylation with severe immunodeficiency and skeletal dysplasia. Am. J. Hum. Genet. 95, 96–107 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hakomori, S. I. & Murakami, W. T. Glycolipids of hamster fibroblasts and derived malignant-transformed cell lines. Proc. Natl Acad. Sci. USA 59, 254–261 (1968).

    CAS  PubMed  Google Scholar 

  8. Ladenson, R. P., Schwartz, S. O. & Ivy, A. C. Incidence of the blood groups and the secretor factor in patients with pernicious anemia and stomach carcinoma. Am. J. Med. Sci. 217, 194–197 (1949).

    CAS  PubMed  Google Scholar 

  9. Hakomori, S. & Kannagi, R. Glycosphingolipids as tumor-associated and differentiation markers. J. Natl Cancer Inst. 71, 231–251 (1983).

    CAS  PubMed  Google Scholar 

  10. Johnson, V. G. et al. Analysis of a human tumor-associated glycoprotein (TAG-72) identified by monoclonal antibody B72.3. Cancer Res. 46, 850–857 (1986).

    CAS  PubMed  Google Scholar 

  11. Herlyn, M., Sears, H. F., Steplewski, Z. & Koprowski, H. Monoclonal antibody detection of a circulating tumor-associated antigen. I. Presence of antigen in sera of patients with colorectal, gastric, and pancreatic carcinoma. J. Clin. Immunol. 2, 135–140 (1982).

    CAS  PubMed  Google Scholar 

  12. Klug, T. L. et al. Monoclonal antibody immunoradiometric assay for an antigenic determinant (CA 125) associated with human epithelial ovarian carcinomas. Cancer Res. 44, 1048–1053 (1984).

    CAS  PubMed  Google Scholar 

  13. Munkley, J. & Elliott D. J. Hallmarks of glycosylation in cancer. Oncotarget http://dx.doi.org/10.18632/oncotarget.8155 (2016)

  14. Lilja, H., Ulmert, D. & Vickers, A. J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat. Rev. Cancer 8, 268–278 (2008).

    CAS  PubMed  Google Scholar 

  15. Dhanasekaran, S. M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    CAS  PubMed  Google Scholar 

  16. Barry, M. J. Prostate-specific-antigen testing for early diagnosis of prostate cancer. N. Engl. J. Med. 344, 1373–1377 (2001).

    CAS  PubMed  Google Scholar 

  17. Barry, M. J. Screening for prostate cancer — the controversy that refuses to die. N. Engl. J. Med. 360, 1351–1354 (2009).

    CAS  PubMed  Google Scholar 

  18. Gilgunn, S., Conroy, P. J., Saldova, R., Rudd, P. M. & O'Kennedy, R. J. Aberrant PSA glycosylation — a sweet predictor of prostate cancer. Nat. Rev. Urol. 10, 99–107 (2013). Review article discussing the potential of altered PSA-glycosylation patterns to be used diagnostically to distinguish indolent from aggressive prostate cancer.

    CAS  PubMed  Google Scholar 

  19. Drake, R. R., Jones, E., E., Powers, T. W. & Nyalwidhe, J. O. Chapter ten — altered glycosylation in prostate cancer. Adv. Cancer Res. 126, 345–382 (2015).

    CAS  PubMed  Google Scholar 

  20. Okada, T. et al. Structural characteristics of the N-glycans of two isoforms of prostate-specific antigens purified from human seminal fluid. Biochim. Biophys. Acta 1525, 149–160 (2001).

    CAS  PubMed  Google Scholar 

  21. Prakash, S. & Robbins, P. W. Glycotyping of prostate specific antigen. Glycobiology 10, 173–176 (2000).

    CAS  PubMed  Google Scholar 

  22. Peracaula, R. et al. Altered glycosylation pattern allows the distinction between prostate-specific antigen (PSA) from normal and tumor origins. Glycobiology 13, 457–470 (2003).

    CAS  PubMed  Google Scholar 

  23. White, K. Y. et al. Glycomic characterization of prostate-specific antigen and prostatic acid phosphatase in prostate cancer and benign disease seminal plasma fluids. J. Proteome Res. 8, 620–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tajiri, M., Ohyama, C. & Wada, Y. Oligosaccharide profiles of the prostate specific antigen in free and complexed forms from the prostate cancer patient serum and in seminal plasma: a glycopeptide approach. Glycobiology 18, 2–8 (2008).

    CAS  PubMed  Google Scholar 

  25. Dwek, M. V., Jenks, A. & Leathem, A. J. A sensitive assay to measure biomarker glycosylation demonstrates increased fucosylation of prostate specific antigen (PSA) in patients with prostate cancer compared with benign prostatic hyperplasia. Clin. Chim. Acta 411, 1935–1939 (2010).

    CAS  PubMed  Google Scholar 

  26. Fukushima, K., Satoh, T., Baba, S. & Yamashita, K. α1,2-fucosylated and β-N-acetylgalactosaminylated prostate-specific antigen as an efficient marker of prostatic cancer. Glycobiology 20, 452–460 (2010).

    CAS  PubMed  Google Scholar 

  27. Sarrats, A. et al. Differential percentage of serum prostate-specific antigen subforms suggests a new way to improve prostate cancer diagnosis. Prostate 70, 1–9 (2010).

    CAS  PubMed  Google Scholar 

  28. Sarrats, A. et al. Glycan characterization of PSA 2-DE subforms from serum and seminal plasma. OMICS 14, 465–474 (2010).

    CAS  PubMed  Google Scholar 

  29. Ohyama, C. et al. Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 14, 671–679 (2004).

    CAS  PubMed  Google Scholar 

  30. Meany, D. L. & Chan, D. W. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin. Proteomics 8, 7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen, Z., Gulzar, Z. G., St Hill, C. A., Walcheck, B. & Brooks, J. D. Increased expression of GCNT1 is associated with altered O-glycosylation of PSA, PAP, and MUC1 in human prostate cancers. Prostate 74, 1059–1067 (2014). Core-2-GlcNAc-transferase (GCNT1) is over-expressed in prostate cancer and is associated with higher levels of core-2-O-sLe(x) in PSA, PAP and MUC1 proteins. Alterations of O-linked glycosylation could be important in prostate cancer biology and could provide a new avenue for development of prostate cancer specific glycoprotein biomarkers.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Leymarie, N. et al. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol. Cell. Proteomics 12, 2935–2951 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Stura, E. A. et al. Crystal structure of human prostate-specific antigen in a sandwich antibody complex. J. Mol. Biol. 414, 530–544 (2011).

    CAS  PubMed  Google Scholar 

  34. Vanhooren, V. et al. Serum N-glycan profile shift during human ageing. Exp. Gerontol. 45, 738–743 (2010).

    CAS  PubMed  Google Scholar 

  35. Yoshida, K. I. et al. Serial lectin affinity chromatography with concavalin A and wheat germ agglutinin demonstrates altered asparagine-linked sugar-chain structures of prostatic acid phosphatase in human prostate carcinoma. J. Chromatogr. B Biomed. Sci. Appl. 695, 439–443 (1997).

    CAS  PubMed  Google Scholar 

  36. Kudelka, M. R., Ju, T., Heimburg-Molinaro, J. & Cummings, R. D. Chapter three — imple sugars to complex disease — mucin-type O-glycans in cancer. Adv. Cancer Res. 126, 53–135 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015).

    CAS  PubMed  Google Scholar 

  38. Radhakrishnan, P. et al. Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proc. Natl Acad. Sci. USA 111, E4066–E4075 (2014).

    CAS  PubMed  Google Scholar 

  39. Kobayashi, H., Terao, T. & Kawashima, Y. Sialyl Tn as a prognostic marker in epithelial ovarian cancer. Br. J. Cancer 66, 984–985 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kobayashi, H., Terao, T. & Kawashima, Y. Serum sialyl Tn as an independent predictor of poor prognosis in patients with epithelial ovarian cancer. J. Clin. Oncol. 10, 95–101 (1992).

    CAS  PubMed  Google Scholar 

  41. Soares, R., Marinho, A. & Schmitt, F. Expression of sialyl-Tn in breast cancer correlation with prognostic parameters. Pathol. Res. Pract. 192, 1181–1186 (1996).

    CAS  PubMed  Google Scholar 

  42. Munkley, J. The role of Sialyl-Tn in cancer. Int. J. Mol. Sci. 17, 275 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Arai, T., Fujita, K., Fujime, M. & Irimura, T. Expression of sialylated MUC1 in prostate cancer: relationship to clinical stage and prognosis. Int. J. Urol. 12, 654–661 (2005).

    CAS  PubMed  Google Scholar 

  44. Munkley, J. et al. The androgen receptor controls expression of the cancer-associated sTn antigen and cell adhesion through induction of ST6GalNAc1 in prostate cancer. Oncotarget 6, 34358–34374 (2015). The sialytransferase ST6GalNAc1 and the cancer-associated sialyl-Tn antigen are regulated by androgens in prostate cancer cells. Surprisingly, given its high expression in tumours, stable expression of ST6GalNAc1 in prostate cancer cells reduced the formation of stable tumours in mice, reduced cell adhesion and induced a switch towards a more mesenchymal-like cell phenotype in vitro. ST6GalNAc1 has a dynamic expression pattern in clinical datasets, being significantly up-regulated in primary prostate carcinoma but relatively down-regulated in established metastatic tissue.

    PubMed  PubMed Central  Google Scholar 

  45. Genega, E. M., Hutchinson, B., Reuter, V. E. & Gaudin, P. B. Immunophenotype of high-grade prostatic adenocarcinoma and urothelial carcinoma. Mod. Pathol. 13, 1186–1191 (2000).

    CAS  PubMed  Google Scholar 

  46. Munkley, J. The role of sialyl-Tn in cancer. Int. J. Mol. Sci. 17, E275 (2016).

    PubMed  Google Scholar 

  47. Myers, R. B. et al. Tumor associated glycoprotein-72 is highly expressed in prostatic adenocarcinomas. J. Urol. 152, 243–246 (1994).

    CAS  PubMed  Google Scholar 

  48. Ozaki, H. et al. Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model. Clin. Exp. Metastasis 29, 229–238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Julien, S. et al. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 16, 54–64 (2006).

    CAS  PubMed  Google Scholar 

  50. Slovin, S. F. et al. Fully synthetic carbohydrate-based vaccines in biochemically relapsed prostate cancer: clinical trial results with α-N-acetylgalactosamine-O-serine/threonine conjugate vaccine. J. Clin. Oncol. 21, 4292–4298 (2003).

    CAS  PubMed  Google Scholar 

  51. Amado, M., Carneiro, F., Seixas, M., Clausen, H. & Sobrinho-Simoes, M. Dimeric sialyl-Lex expression in gastric carcinoma correlates with venous invasion and poor outcome. Gastroenterology 114, 462–470 (1998).

    CAS  PubMed  Google Scholar 

  52. Baldus, S. E. et al. Histopathological subtypes and prognosis of gastric cancer are correlated with the expression of mucin-associated sialylated antigens: Sialosyl-Lewisa, Sialosyl-Lewisx and sialosyl-Tn. Tumour Biol. 19, 445–453 (1998).

    CAS  PubMed  Google Scholar 

  53. Walker, P. D., Karnik, S., deKernion, J. B. & Pramberg, J. C. Cell surface blood group antigens in prostatic carcinoma. Am. J. Clin. Pathol. 81, 503–506 (1984).

    CAS  PubMed  Google Scholar 

  54. Culig, Z. et al. Expression of Lewis carbohydrate antigens in metastatic lesions from human prostatic carcinoma. Prostate 36, 162–167 (1998).

    CAS  PubMed  Google Scholar 

  55. Jorgensen, T. et al. Up-regulation of the oligosaccharide sialyl Lewisx: a new prognostic parameter in metastatic prostate cancer. Cancer Res. 55, 1817–1819 (1995).

    CAS  PubMed  Google Scholar 

  56. Martensson, S. et al. Sialyl-Lewisx and related carbohydrate antigens in the prostate. Hum. Pathol. 26, 735–739 (1995).

    CAS  PubMed  Google Scholar 

  57. Okamoto, T. et al. Core2 O-glycan-expressing prostate cancer cells are resistant to NK cell immunity. Mol. Med. Rep. 7, 359–364 (2013).

    CAS  PubMed  Google Scholar 

  58. Carvalho, A. S. et al. Differential expression of α-2,3-sialyltransferases and α-1,3/4-fucosyltransferases regulates the levels of sialyl Lewis a and sialyl Lewis x in gastrointestinal carcinoma cells. Int. J. Biochem. Cell Biol. 42, 80–89 (2010).

    CAS  PubMed  Google Scholar 

  59. Saldova, R., Fan, Y., Fitzpatrick, J. M., Watson, R. W. & Rudd, P. M. Core fucosylation and α2-3 sialylation in serum N-glycome is significantly increased in prostate cancer comparing to benign prostate hyperplasia. Glycobiology 21, 195–205 (2011).

    CAS  PubMed  Google Scholar 

  60. Tabares, G. et al. Different glycan structures in prostate-specific antigen from prostate cancer sera in relation to seminal plasma PSA. Glycobiology 16, 132–145 (2006).

    CAS  PubMed  Google Scholar 

  61. Kyselova, Z. et al. Alterations in the serum glycome due to metastatic prostate cancer. J. Proteome Res. 6, 1822–1832 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Shah, P. et al. Integrated proteomic and glycoproteomic analyses of prostate cancer cells reveal glycoprotein alteration in protein abundance and glycosylation. Mol. Cell. Proteomics 14, 2753–2763 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang, X. et al. Overexpression of α (1,6) fucosyltransferase associated with aggressive prostate cancer. Glycobiology 24, 935–944 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Barthel, S. R. et al. Alpha 1,3 fucosyltransferases are master regulators of prostate cancer cell trafficking. Proc. Natl Acad. Sci. USA 106, 19491–19496 (2009).

    CAS  PubMed  Google Scholar 

  65. Lange, T. et al. Human prostate cancer in a clinically relevant xenograft mouse model: identification of β(1,6)-branched oligosaccharides as a marker of tumor progression. Clin. Cancer Res. 18, 1364–1373 (2012).

    CAS  PubMed  Google Scholar 

  66. Tsui, K. H. et al. Evaluating the function of matriptase and N-acetylglucosaminyltransferase V in prostate cancer metastasis. Anticancer Res. 28, 1993–1999 (2008).

    CAS  PubMed  Google Scholar 

  67. Ishibashi, Y. et al. Serum tri- and tetra-antennary N-glycan is a potential predictive biomarker for castration-resistant prostate cancer. Prostate 74, 1521–1529 (2014).

    CAS  PubMed  Google Scholar 

  68. Newsom-Davis, T. E. et al. Enhanced immune recognition of cryptic glycan markers in human tumors. Cancer Res. 69, 2018–2025 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, D. et al. N-glycan cryptic antigens as active immunological targets in prostate cancer patients. J. Proteomics Bioinform. 5, 090–095 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Wang, D. et al. Anti-oligomannose antibodies as potential serum biomarkers of aggressive prostate cancer. Drug Dev. Res. 74, 65–80 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ravindranath, M. H. et al. Gangliosides of organ-confined versus metastatic androgen-receptor-negative prostate cancer. Biochem. Biophys. Res. Commun. 324, 154–165 (2004).

    CAS  PubMed  Google Scholar 

  72. Hatano, K. et al. Androgen-regulated transcriptional control of sialyltransferases in prostate cancer cells. PLoS ONE 7, e31234 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Nonaka, M. et al. Determination of carbohydrate structure recognized by prostate-specific F77 monoclonal antibody through expression analysis of glycosyltransferase genes. J. Biol. Chem. 289, 16478–16486 (2014). The F77 antibody was initially isolated from mice after injection of PC3 tumour cells and provoked great interest based on its diagnostic and therapeutic potential. The glycosyltransferases responsible for the synthesis of the F77 antigen have been identified as FUT1, GCNT1, GCNT2 and GCNT3. Notably the core-2-glycosyltransferase GCNT1 is upregulated in prostate cancer tissue and this upregulation has been previously linked with disease progression.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao, C. et al. Carbohydrate sequence of the prostate cancer-associated antigen F77 assigned by a mucin O-glycome designer array. J. Biol. Chem. 289, 16462–16477 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Carroll, A. M. et al. Monoclonal antibodies to tissue-specific cell surface antigens. I. Characterization of an antibody to a prostate tissue antigen. Clin. Immunol. Immunopathol. 33, 268–281 (1984).

    CAS  PubMed  Google Scholar 

  76. Zhang, G. et al. Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker. Proc. Natl Acad. Sci. USA 107, 732–737 (2010).

    CAS  PubMed  Google Scholar 

  77. Hagisawa, S. et al. Expression of core 2 β1,6-N-acetylglucosaminyltransferase facilitates prostate cancer progression. Glycobiology 15, 1016–1024 (2005).

    CAS  PubMed  Google Scholar 

  78. Ricciardelli, C. et al. Elevated stromal chondroitin sulfate glycosaminoglycan predicts progression in early-stage prostate cancer. Clin. Cancer Res. 3, 983–992 (1997).

    CAS  PubMed  Google Scholar 

  79. Iozzo, R. V. & Sanderson, R. D. Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 15, 1013–1031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Afratis, N. et al. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J. 279, 1177–1197 (2012).

    CAS  PubMed  Google Scholar 

  81. Edwards, I. J. Proteoglycans in prostate cancer. Nat. Rev. Urol. 9, 196–206 (2012).

    CAS  PubMed  Google Scholar 

  82. Suhovskih, A. V. et al. Proteoglycan expression in normal human prostate tissue and prostate cancer. ISRN Oncol. 2013, 680136 (2013).

    PubMed  PubMed Central  Google Scholar 

  83. Henke, A. et al. Stromal expression of decorin, Semaphorin6D, SPARC, Sprouty1 and Tsukushi in developing prostate and decreased levels of decorin in prostate cancer. PLoS ONE 7, e42516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu, Y. et al. Decorin suppresses prostate tumor growth through inhibition of epidermal growth factor and androgen receptor pathways. Neoplasia 11, 1042–1053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Datta, M. W. et al. Perlecan, a candidate gene for the CAPB locus, regulates prostate cancer cell growth via the Sonic Hedgehog pathway. Mol. Cancer 5, 9 (2006).

    PubMed  PubMed Central  Google Scholar 

  86. Ricciardelli, C. et al. Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin. Cancer Res. 4, 963–971 (1998).

    CAS  PubMed  Google Scholar 

  87. Touab, M., Villena, J., Barranco, C., Arumi-Uria, M. & Bassols, A. Versican is differentially expressed in human melanoma and may play a role in tumor development. Am. J. Pathol. 160, 549–557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pukkila, M. et al. High stromal versican expression predicts unfavourable outcome in oral squamous cell carcinoma. J. Clin. Pathol. 60, 267–272 (2007).

    PubMed  Google Scholar 

  89. Skandalis, S. S., Kletsas, D., Kyriakopoulou, D., Stavropoulos, M. & Theocharis, D. A. The greatly increased amounts of accumulated versican and decorin with specific post-translational modifications may be closely associated with the malignant phenotype of pancreatic cancer. Biochim. Biophys. Acta 1760, 1217–1225 (2006).

    CAS  PubMed  Google Scholar 

  90. Sakko, A. J. et al. Immunohistochemical level of unsulfated chondroitin disaccharides in the cancer stroma is an independent predictor of prostate cancer relapse. Cancer Epidemiol. Biomarkers Prev. 17, 2488–2497 (2008).

    CAS  PubMed  Google Scholar 

  91. Ricciardelli, C. et al. Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility. 282, 10814–10825 (2007).

  92. Ricciardelli, C. et al. Elevated levels of peritumoral chondroitin sulfate are predictive of poor prognosis in patients treated by radical prostatectomy for early-stage prostate cancer. Cancer Res. 59, 2324–2328 (1999).

    CAS  PubMed  Google Scholar 

  93. Shimada, K. et al. Syndecan-1 (CD138) contributes to prostate cancer progression by stabilizing tumour-initiating cells. J. Pathol. 231, 495–504 (2013).

    CAS  PubMed  Google Scholar 

  94. Fujii, T. et al. Syndecan-1 up-regulates microRNA-331-3p and mediates epithelial-to-mesenchymal transition in prostate cancer. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22381 (2015).

  95. Fujii, T., Shimada, K., Tatsumi, Y., Fujimoto, K. & Konishi, N. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer. Biochem. Biophys. Res. Commun. 456, 183–189 (2015).

    CAS  PubMed  Google Scholar 

  96. Love, D. C. & Hanover, J. A. The hexosamine signaling pathway: deciphering the 'O-GlcNAc code'. Sci. signal. 2005, re13 (2005).

    Google Scholar 

  97. Hanover, J. A., Krause, M. W. & Love, D. C. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 13, 312–321 (2012).

    CAS  PubMed  Google Scholar 

  98. Bond, M. R. & Hanover, J. A. A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208, 869–880 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Butkinaree, C., Park, K. & Hart, G. W. O-linked β-N-acetylglucosamine (O-GlcNAc): extensive crosstalk with phosphorylation to regulate signaling and transcription in response to nutrients and stress. Biochim. Biophys. Acta 1800, 96–106 (2010).

    CAS  PubMed  Google Scholar 

  100. Schwarz, F. & Aebi, M. Mechanisms and principles of N-linked protein glycosylation. Curr. Opin. Struct. Biol. 21, 576–582 (2011).

    CAS  PubMed  Google Scholar 

  101. Itkonen, H. M. et al. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73, 5277–5287 (2013).

    CAS  PubMed  Google Scholar 

  102. Lynch, T. P. et al. Critical role of O-linked β-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J. Biol. Chem. 287, 11070–11081 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamigaito, T. et al. Overexpression of O-GlcNAc by prostate cancer cells is significantly associated with poor prognosis of patients. Prostate Cancer Prostatic Dis. 17, 18–22 (2014).

    CAS  PubMed  Google Scholar 

  104. Itknonen, H.M. et al. Inhibition of O-GlcNAc transferase activity reprograms prostate cancer cell metabolism. http://dx.doi.org/10.18632/oncotarget.7039 (2016).

  105. Itkonen, H. M. et al. UAP1 is overexpressed in prostate cancer and is protective against inhibitors of N-linked glycosylation. Oncogene 34, 3744–3750 (2014). The hexosamine biosynthetic pathway (HBP) produces hexosamines that are used by enzymes in the endoplasmic reticulum and golgi apparatus to glycosylate proteins targeted to the plasma membrane and those that are secreted. This study demonstrates that the HBP enzyme UAP1, which is regulated by androgens in prostate cancer cells, is linked with cancer progression. High levels of UAP1 expression and/or HBP activity appear to be protective against inhibitors of N-linked glycosylation in prostate cancer.

    PubMed  Google Scholar 

  106. Barfeld, S. J., East, P., Zuber, V. & Mills, I. G. Meta-analysis of prostate cancer gene expression data identifies a novel discriminatory signature enriched for glycosylating enzymes. BMC Med. Genom. 7, 513 (2014). This study identifies a 33-gene signature that can discriminate between benign tissue controls and localised prostate cancers irrespective of detection platform or dissection status. Biologically, glycosylation was the single enriched process associated with this 33 gene signature, encompassing four glycosylating enzymes.

    Google Scholar 

  107. Itkonen, H. M. & Mills, I. G. N-linked glycosylation supports cross-talk between receptor tyrosine kinases and androgen receptor. PLoS ONE 8, e65016 (2013). This study shows that glycosylation of the insulin-like growth factor-1 (IGFR1) is necessary for the full activation of the receptor in response to androgen treatment and that perturbing this process can break the feedback loop between AR and IGFR1 activation in prostate cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mitchell, B. S. & Schumacher, U. The use of the lectin Helix pomatia agglutinin (HPA) as a prognostic indicator and as a tool in cancer research. Histol. Histopathol. 14, 217–226 (1999).

    CAS  PubMed  Google Scholar 

  109. Laack, E. et al. Lectin histochemistry of resected adenocarcinoma of the lung: helix pomatia agglutinin binding is an independent prognostic factor. Am. J. Pathol. 160, 1001–1008 (2002).

    PubMed  PubMed Central  Google Scholar 

  110. Kakeji, Y., Tsujitani, S., Mori, M., Maehara, Y. & Sugimachi, K. Helix pomatia agglutinin binding activity is a predictor of survival time for patients with gastric carcinoma. Cancer 68, 2438–2442 (1991).

    CAS  PubMed  Google Scholar 

  111. Thies, A., Moll, I., Berger, J. & Schumacher, U. Lectin binding to cutaneous malignant melanoma: HPA is associated with metastasis formation. Br. J. Cancer 84, 819–823 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lange, T. et al. Aberrant presentation of HPA-reactive carbohydrates implies selectin-independent metastasis formation in human prostate cancer. Clin. Cancer Res. 20, 1791–1802 (2014). Positive binding of the Helix pomatia (HPA) lectin is associated with disease progression and metastasis in a range of cancer types; however, in prostate cancer, binding of HPA is reduced in metastatic disease and patients with HPA-negative tumours have worse overall survival and faster progression.

    CAS  PubMed  Google Scholar 

  113. Powers, T. W. et al. Matrix assisted laser desorption ionization imaging mass spectrometry workflow for spatial profiling analysis of N-linked glycan expression in tissues. Anal. Chem. 85, 9799–9806 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Powers, T. W. et al. MALDI imaging mass spectrometry profiling of N-glycans in formalin-fixed paraffin embedded clinical tissue blocks and tissue microarrays. PLoS ONE 9, e106255 (2014).

    PubMed  PubMed Central  Google Scholar 

  115. Yoneyama, T. et al. Measurement of aberrant glycosylation of prostate specific antigen can improve specificity in early detection of prostate cancer. Biochem. Biophys. Res. Commun. 448, 390–396 (2014).

    CAS  PubMed  Google Scholar 

  116. Drake, R. R. & Kislinger, T. The proteomics of prostate cancer exosomes. Expert Rev. Proteomics 11, 167–177 (2014).

    CAS  PubMed  Google Scholar 

  117. Taniguchi, N. & Kizuka, Y. Chapter two — glycans and cancer: role of N-glycans in cancer biomarker, progression and metastasis, and therapeutics. Adv. Cancer Res. 126, 11–51 (2015).

    CAS  PubMed  Google Scholar 

  118. Rini, J., Esko, J. & Varki, A. et al. Essentials of Glycobiology (eds Varki, A. et al.) (2009).

    Google Scholar 

Download references

Acknowledgements

This work was funded by Prostate Cancer UK (PG12-34), The J.G.W Patterson Foundation, The Wellcome Trust (grant numbers WT080368MA and WT089225/Z/09/Z) and BBSRC (grant BB/1006923/1 and BB/J007293/1). I.G.M is supported in Belfast by the Belfast-Manchester Movember Centre of Excellence (CE013_2-004), funded in partnership with Prostate Cancer UK.

Author information

Authors and Affiliations

Authors

Contributions

J.M. researched data for this article, J.M. and D.E. made a substantial contribution to discussions of content, J.M. and I.G.M. wrote the manuscript and all authors edited and/or reviewed the manuscript prior to submission.

Corresponding author

Correspondence to Jennifer Munkley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Glycoproteins

Proteins modified by one or more glycans.

Glycans

The carbohydrate moieties of a glycoprotein, glycolipid or a proteoglycan.

O-linked glycans

Oligosaccharides that are covalently linked to a serine or threonine residue via an oxygen atom.

N-linked glycans

Oligosaccharides covalently linked to an asparagine residue of a protein via a nitrogen atom.

Glycome

The global collection of glycans (sugar chains) synthesized by a cell.

Glycosyltransferases

Enzymes that catalyse the transfer of sugars (saccharides) to proteins, lipids or carbohydrates, forming covalent bonds.

Lectins

Carbohydrate binding proteins that are highly specific for sugar moieties.

Glycolipid

A lipid modified by one or more glycans.

Proteoglycans

Proteins with one or more glycosaminoglycan (GAG) chains, such as chondroitin sulfate and heparin sulfate. Proteoglycans constitute a large fraction of the extracellular matrix and have key roles in cell adhesion and motility.

O-GlcNAcylation

Addition of N-acetylglucosamine (GlcNAc) to serine or threonine residues on nuclear and cytoplasmic proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munkley, J., Mills, I. & Elliott, D. The role of glycans in the development and progression of prostate cancer. Nat Rev Urol 13, 324–333 (2016). https://doi.org/10.1038/nrurol.2016.65

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2016.65

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer