Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tumour and patient factors in renal cell carcinoma—towards personalized therapy

Key Points

  • Recent large scale 'omics' studies have characterized the main genomic driver alterations of renal cell carcinoma (RCC)

  • The intertumour and intratumour genetic heterogeneity of RCC leads to diverse tumour biology and heterogeneous clinical responses

  • Genomic classifications, including gene expression profiles, have prognostic utility in RCC

  • Patient factors, including germline single nucleotide polymorphisms, environmental influences and immune responses are associated with risk of developing RCC and response to therapy

Abstract

Renal cell carcinoma (RCC) comprises a heterogeneous group of histologically and molecularly distinct tumour subtypes. Current targeted therapies have improved survival in patients with advanced disease but complete response occurs rarely, if at all. The genomic characterization of RCC is central to the development of novel targeted therapies. Large-scale studies employing multiple 'omics' platforms have led to the identification of key driver genes and commonly altered pathways. Specific molecular alterations and signatures that correlate with tumour phenotype and clinical outcome have been identified and can be harnessed for patient management and counselling. RCC seems to be a remarkably diverse malignancy with significant intratumour and intertumour genetic heterogeneity. The tumour microenvironment is increasingly recognized as a vital regulator of RCC tumour biology. Patient factors, including immune response and drug metabolism, vary widely, which can lead to widely divergent responses to drug therapy. Intratumour heterogeneity poses a significant challenge to the development of personalized therapies in RCC as a single biopsy might not accurately represent the clonal population ultimately responsible for aggressive biologic behaviour. On the other hand, the diversity of genomic alterations in RCC could also afford opportunities for targeting unique pathways based on analysis of an individual tumour's molecular composition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Considerations for personalized therapy in RCC

Similar content being viewed by others

References

  1. Joensuu, H. et al. Fluorouracil, epirubicin, and cyclophosphamide with either docetaxel or vinorelbine, with or without trastuzumab, as adjuvant treatments of breast cancer: final results of the FinHer Trial. J. Clin. Oncol. 27, 5685–5692 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Spielmann, M. et al. Trastuzumab for patients with axillary-node-positive breast cancer: results of the FNCLCC-PACS 04 trial. J. Clin. Oncol. 27, 6129–6134 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Amado, R. G. et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J. Clin. Oncol. 26, 1626–1634 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cancer Genome Atlas Research, Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499, 43–49 (2013).

    Article  CAS  Google Scholar 

  6. Sato, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat. Genet. 45, 860–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Dalgliesh, G. L. et al. Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463, 360–363 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo, G. et al. Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat. Genet. 44, 17–19 (2012).

    Article  CAS  Google Scholar 

  9. Arai, E. et al. Multilayer-omics analysis of renal cell carcinoma, including the whole exome, methylome and transcriptome. Int. J. Cancer 135, 1330–1342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scelo, G. L. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat. Commun. 5, 5135 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Davis, C. F. et al. The somatic genomic landscape of chromophobe renal cell carcinoma. Cancer Cell 26, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Durinck, S. et al. Spectrum of diverse genomic alterations define non-clear cell renal carcinoma subtypes. Nat. Genet. 47, 13–21 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Varela, I. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srigley, J. R. et al. The International Society of Urological Pathology (ISUP) Vancouver Classification of Renal Neoplasia. Am. J. Surg. Pathol. 37, 1469–1489 (2013).

    Article  PubMed  Google Scholar 

  15. Kane, C. J. et al. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer 113, 78–83 (2008).

    Article  PubMed  Google Scholar 

  16. Janzen, N. K. et al. Surveillance after radical or partial nephrectomy for localized renal cell carcinoma and management of recurrent disease. Urol. Clin. North Am. 30, 843–852 (2003).

    Article  PubMed  Google Scholar 

  17. Chen, D. Y. & Uzzo, R. G. Evaluation and management of the renal mass. Med. Clin. North Am. 95, 179–189 (2011).

    Article  PubMed  Google Scholar 

  18. Chin, A. I. et al. Surveillance strategies for renal cell carcinoma patients following nephrectomy. Rev. Urol. 8, 1–7 (2006).

    PubMed  PubMed Central  Google Scholar 

  19. Karakiewicz, P. I. et al. Multi-institutional validation of a new renal cancer-specific survival nomogram. J. Clin. Oncol. 25, 1316–1322 (2007).

    Article  PubMed  Google Scholar 

  20. Zisman, A. et al. Improved prognostication of renal cell carcinoma using an integrated staging system. J. Clin. Oncol. 19, 1649–1657 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Frank, I. et al. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: the SSIGN score. J. Urol. 168, 2395–2400 (2002).

    Article  PubMed  Google Scholar 

  22. Leibovich, B. C. et al. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97, 1663–1671 (2003).

    Article  PubMed  Google Scholar 

  23. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Negrier, S. et al. Temsirolimus and bevacizumab, or sunitinib, or interferon alfa and bevacizumab for patients with advanced renal cell carcinoma (TORAVA): a randomised phase 2 trial. Lancet Oncol. 12, 673–680 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Coppin, C. et al. Immunotherapy for advanced renal cell cancer [online], Cochrane Database Syst. Rev. (2004).

  29. Rosenberg, S. A. et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907–913 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Rosenberg, S. A. et al. Durability of complete responses in patients with metastatic cancer treated with high-dose interleukin-2: identification of the antigens mediating response. Ann. Surg. 228, 307–319 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Escudier, B. et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J. Clin. Oncol. 28, 2144–2150 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Motzer, R. J. et al. Overall survival in renal-cell carcinoma with pazopanib versus sunitinib. N. Engl. J. Med. 370, 1769–1770 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Rini, B. I. & Atkins, M. B. Resistance to targeted therapy in renal-cell carcinoma. Lancet Oncol. 10, 992–1000 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brugarolas, J. Molecular genetics of clear-cell renal cell carcinoma. J. Clin. Oncol. 32, 1968–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nat. Rev. Urol. 7, 277–285 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robinson, C. M. & Ohh, M. The multifaceted von Hippel-Lindau tumour suppressor protein. FEBS Lett. 588, 2704–2711 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Keith, B., Johnson, R. S. & Simon, M. C. HIF1alpha and HIF2alpha: sibling rivalry in hypoxic tumour growth and progression. Nat. Rev. Cancer 12, 9–22 (2012).

    Article  CAS  Google Scholar 

  43. Thoma, C. R. et al. VHL loss causes spindle misorientation and chromosome instability. Nat. Cell Biol. 11, 994–1001 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farley, M. N. et al. A novel germline mutation in BAP1 predisposes to familial clear-cell renal cell carcinoma. Mol. Cancer Res. 11, 1061–1071 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, S. S. et al. Bap1 is essential for kidney function and cooperates with Vhl in renal tumorigenesis. Proc. Natl Acad. Sci. USA 111, 16538–16543 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haddad, A. Q. et al. Validation of mammalian target of rapamycin biomarker panel in patients with clear cell renal cell carcinoma. Cancer 121, 43–50 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Dondeti, V. R. et al. Integrative genomic analyses of sporadic clear cell renal cell carcinoma define disease subtypes and potential new therapeutic targets. Cancer Res. 72, 112–121 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Girgis, A. H. et al. Multilevel whole-genome analysis reveals candidate biomarkers in clear cell renal cell carcinoma. Cancer Res. 72, 5273–5284 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Beroukhim, R. et al. Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res. 69, 4674–4681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Olshan, A. F. et al. Racial difference in histologic subtype of renal cell carcinoma. Cancer Med. 2, 744–749 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lipworth, L. et al. Renal cell cancer histologic subtype distribution differs by race and sex. BJU Int. http://dx.doi.org/10.1111/bju.12950 (2014).

  53. Hoang, M. L. et al. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5, 197ra102 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Nortier, J. L. et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med. 342, 1686–1692 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Lemy, A. et al. Late onset of bladder urothelial carcinoma after kidney transplantation for end-stage aristolochic acid nephropathy: a case series with 15-year follow-up. Am. J. Kidney Dis. 51, 471–477 (2008).

    Article  PubMed  Google Scholar 

  56. Modena, P. et al. UQCRH gene encoding mitochondrial Hinge protein is interrupted by a translocation in a soft-tissue sarcoma and epigenetically inactivated in some cancer cell lines. Oncogene 22, 4586–4593 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Hoffman, A. M. & Cairns, P. Epigenetics of kidney cancer and bladder cancer. Epigenomics 3, 19–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Glas, A. M. et al. Converting a breast cancer microarray signature into a high-throughput diagnostic test. BMC Genomics 7, 278 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Takahashi, M. et al. Gene expression profiling of clear cell renal cell carcinoma: gene identification and prognostic classification. Proc. Natl Acad. Sci. USA 98, 9754–9759 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanjmyatav, J. et al. A specific gene expression signature characterizes metastatic potential in clear cell renal cell carcinoma. J. Urol. 186, 289–294 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Jones, J. et al. Gene signatures of progression and metastasis in renal cell cancer. Clin. Cancer Res. 11, 5730–5739 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Sultmann, H. et al. Gene expression in kidney cancer is associated with cytogenetic abnormalities, metastasis formation, and patient survival. Clin. Cancer Res. 11, 646–655 (2005).

    PubMed  Google Scholar 

  63. Zhao, H. et al. Gene expression profiling predicts survival in conventional renal cell carcinoma. PLoS Med. 3, e13 (2006).

    Article  PubMed  CAS  Google Scholar 

  64. Brannon, A. R. et al. Molecular Stratification of Clear Cell Renal Cell Carcinoma by Consensus Clustering Reveals Distinct Subtypes and Survival Patterns. Genes Cancer 1, 152–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Brannon, A. R. et al. Meta-analysis of clear cell renal cell carcinoma gene expression defines a variant subgroup and identifies gender influences on tumor biology. Eur. Urol. 61, 258–268 (2012).

    Article  PubMed  Google Scholar 

  66. Brooks, S. A. et al. ClearCode34: A prognostic risk predictor for localized clear cell renal cell carcinoma. Eur. Urol. 66, 77–84 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Burrell, R. A. et al. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  PubMed  Google Scholar 

  71. Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: implications for targeted therapeutics. Br. J. Cancer 108, 479–485 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Campbell, P. J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hovey, R. M. et al. Genetic alterations in primary bladder cancers and their metastases. Cancer Res. 58, 3555–3560 (1998).

    CAS  PubMed  Google Scholar 

  74. Jiang, J. K. et al. Genetic changes and clonality relationship between primary colorectal cancers and their pulmonary metastases—an analysis by comparative genomic hybridization. Genes Chromosomes Cancer 43, 25–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Wu, X. et al. Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482, 529–533 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Gulati, S. et al. Systematic Evaluation of the Prognostic Impact and Intratumour Heterogeneity of Clear Cell Renal Cell Carcinoma Biomarkers. Eur. Urol. 66, 936–948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xu, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148, 886–895 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yang, X. J et al. A molecular classification of papillary renal cell carcinoma. Cancer Res. 65, 5628–5637 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Delahunt, B. et al. Morphologic typing of papillary renal cell carcinoma: comparison of growth kinetics and patient survival in 66 cases. Hum. Pathol. 32, 590–595 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Klatte, T. et al. Cytogenetic and molecular tumor profiling for type 1 and type 2 papillary renal cell carcinoma. Clin. Cancer Res. 15, 1162–1169 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Kovacs, G. Papillary renal cell carcinoma. A morphologic and cytogenetic study of 11 cases. Am. J. Pathol. 134, 27–34 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Zbar, B. et al. Hereditary papillary renal cell carcinoma. J. Urol. 151, 561–566 (1994).

    Article  CAS  PubMed  Google Scholar 

  86. Launonen, V. et al. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc. Natl Acad. Sci. USA 98, 3387–3392 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schmidt, L. et al. Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat. Genet. 16, 68–73 (1997).

    Article  CAS  PubMed  Google Scholar 

  88. Tomlinson, I. P. et al. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30, 406–410 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Nickerson, M. L et al. Mutations in a novel gene lead to kidney tumors, lung wall defects, and benign tumors of the hair follicle in patients with the Birt-Hogg-Dube syndrome. Cancer Cell 2, 157–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Klomp, J. A. et al. Birt-Hogg-Dube renal tumors are genetically distinct from other renal neoplasias and are associated with up-regulation of mitochondrial gene expression. BMC Med. Genomics 3, 59 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schwerdtle, R. F. et al. Allelic losses at chromosomes 1p, 2p, 6p, 10p, 13q, 17p, and 21q significantly correlate with the chromophobe subtype of renal cell carcinoma. Cancer Res. 56, 2927–2930 (1996).

    CAS  PubMed  Google Scholar 

  92. Gad, S. et al. Mutations in BHD and TP53 genes, but not in HNF1beta gene, in a large series of sporadic chromophobe renal cell carcinoma. Br. J. Cancer 96, 336–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Rohan, S. et al. Gene expression profiling separates chromophobe renal cell carcinoma from oncocytoma and identifies vesicular transport and cell junction proteins as differentially expressed genes. Clin. Cancer Res. 12, 6937–6945 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  95. Santoni, M. et al. Role of natural and adaptive immunity in renal cell carcinoma response to VEGFR-TKIs and mTOR inhibitor. Int. J. Cancer 134, 2772–2777 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Purdue, M. P. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat. Genet. 43, 60–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Schodel, J. et al. Common genetic variants at the 11q13.3 renal cancer susceptibility locus influence binding of HIF to an enhancer of cyclin D1 expression. Nat. Genet. 44, 420–425, S1–2 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Moore, L. E. et al. Apolipoprotein E/C1 locus variants modify renal cell carcinoma risk. Cancer Res. 69, 8001–8008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Henrion, M. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet. 22, 825–831 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Wu, X. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum. Mol. Genet. 21, 456–462 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Audenet, F. et al. Germline genetic variations at 11q13 and 12p11 locus modulate age at onset for renal cell carcinoma J. Urol. 191, 487–492 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Schutz, F. A. et al. Single nucleotide polymorphisms and risk of recurrence of renal-cell carcinoma: a cohort study. Lancet Oncol. 14, 81–87 (2013).

    Article  CAS  PubMed  Google Scholar 

  103. Garcia-Donas, J. et al. Renal carcinoma pharmacogenomics and predictors of response: Steps toward treatment individualization. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2013.09.015 (2014).

  104. Ito, N. et al. STAT3 polymorphism predicts interferon-alfa response in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 25, 2785–2791 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. van der Veldt, A. A. et al. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib. Clin. Cancer Res. 17, 620–629 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Kim, J. J. et al. Association of VEGF and VEGFR2 single nucleotide polymorphisms with hypertension and clinical outcome in metastatic clear cell renal cell carcinoma patients treated with sunitinib. Cancer 118, 1946–1954 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Scartozzi, M. et al. VEGF and VEGFR polymorphisms affect clinical outcome in advanced renal cell carcinoma patients receiving first-line sunitinib. Br. J. Cancer 108, 1126–1132 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Beuselinck, B. et al. Single-nucleotide polymorphisms associated with outcome in metastatic renal cell carcinoma treated with sunitinib. Br. J. Cancer 108, 887–900 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lambrechts, D. et al. VEGF pathway genetic variants as biomarkers of treatment outcome with bevacizumab: an analysis of data from the AViTA and AVOREN randomised trials. Lancet Oncol. 13, 724–733 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Motzer, R. J. et al. Investigation of novel circulating proteins, germ line single-nucleotide polymorphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advanced renal cell carcinoma. Cancer Chemother. Pharmacol. 74, 739–750 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. van Erp, N. P. et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J. Clin. Oncol. 27, 4406–4412 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Garcia-Donas, J. et al. Single nucleotide polymorphism associations with response and toxic effects in patients with advanced renal-cell carcinoma treated with first-line sunitinib: a multicentre, observational, prospective study. Lancet Oncol. 12, 1143–1150 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Kim, H. R. et al. Pharmacogenetic determinants associated with sunitinib-induced toxicity and ethnic difference in Korean metastatic renal cell carcinoma patients. Cancer Chemother. Pharmacol. 72, 825–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Bissell, M. J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. McDermott, D. F. et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Yang, J. C. et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J. Clin. Oncol. 21, 3127–3132 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Naidoo, J., Page, D. B. & Wolchok, J. D. Immune modulation for cancer therapy. Br. J. Cancer 111, 2214–2219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yang, J. C. et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J. Immunother. 30, 825–830 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Finke, J. H. et al. Modification of the tumor microenvironment as a novel target of renal cell carcinoma therapeutics. Cancer J. 19, 353–364 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang, L. et al. Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell 6, 409–421 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Ko, J. S. et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin. Cancer Res. 15, 2148–2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Yuan, H. et al. Axitinib augments antitumor activity in renal cell carcinoma via STAT3-dependent reversal of myeloid-derived suppressor cell accumulation. Biomed. Pharmacother. 68, 751–756 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Noy, R. & Pollard, J. W. Tumor-associated macrophages: from mechanisms to therapy. Immunity 41, 49–61 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chanmee, T. et al. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 6, 1670–1690 (2014).

    Article  CAS  Google Scholar 

  128. Li, C. et al. Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). Cancer Biol. Ther. 12, 872–880 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Menke, J. et al. Autocrine CSF-1 and CSF-1 receptor coexpression promotes renal cell carcinoma growth. Cancer Res. 72, 187–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Kitagawa, D. et al. Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase. J. Biochem. 151, 47–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Lin, J. C. et al. Sorafenib induces autophagy and suppresses activation of human macrophage. Int. Immunopharmacol. 15, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Thompson, R. H. et al. Costimulatory B7-H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc. Natl Acad. Sci. USA 101, 17174–17179 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Jilaveanu, L. B. et al. PD-L1 Expression in Clear Cell Renal Cell Carcinoma: An Analysis of Nephrectomy and Sites of Metastases. J. Cancer 5, 166–172 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bedke, J. et al. Targeted therapy in renal cell carcinoma: moving from molecular agents to specific immunotherapy. World J. Urol. 32, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors researched data for the article, made substantial contributions to discussions of content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Vitaly Margulis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddad, A., Margulis, V. Tumour and patient factors in renal cell carcinoma—towards personalized therapy. Nat Rev Urol 12, 253–262 (2015). https://doi.org/10.1038/nrurol.2015.71

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.71

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research