Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synergistic action of image-guided radiotherapy and androgen deprivation therapy

Key Points

  • Genomic signatures, molecular imaging techniques and the presence or absence of disseminated and circulating tumour cells can identify patients harbouring occult metastases who can benefit from combined therapies

  • In high-risk and/or locally advanced prostate cancer, the combination of image-guided radiotherapy (IGRT) and androgen deprivation therapy (ADT) improves overall survival compared with monotherapies

  • ADT with IGRT can improve outcomes by eradicating occult systemic metastases, improving local and systemic control and decreasing the ability of prostate cancer cells to repair IGRT-induced DNA damage

  • No biomarkers are currently in clinical use to help decide which patients will benefit from ADT

  • Biomarkers of occult metastatic disease and of the efficacy of ADT in individual patients would enable a more bespoke approach to the use, duration and timing of ADT–IGRT

Abstract

The combined use of androgen deprivation therapy (ADT) and image-guided radiotherapy (IGRT) can improve overall survival in aggressive, localized prostate cancer. However, owing to the adverse effects of prolonged ADT, it is imperative to identify the patients who would benefit from this combined-modality therapy relative to the use of IGRT alone. Opportunities exist for more personalized approaches in treating aggressive, locally advanced prostate cancer. Biomarkers—such as disseminated tumour cells, circulating tumour cells, genomic signatures and molecular imaging techniques—could identify the patients who are at greatest risk for systemic metastases and who would benefit from the addition of systemic ADT. By contrast, when biomarkers of systemic disease are not present, treatment could proceed using local IGRT alone. The choice of drug, treatment duration and timing of ADT relative to IGRT could be predicated on these personalized approaches to prostate cancer medicine. These novel treatment intensification and reduction strategies could result in improved prostate-cancer-specific survival and overall survival, without incurring the added expense of metabolic syndrome and other adverse effects of ADT in all patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Investigations and interventions for progressing states of metastatic prostate cancer.
Figure 2: Mechanisms of ADT and IGRT synergy.

Similar content being viewed by others

References

  1. American Cancer Society. What are the key statistics about prostate cancer? [online], (2014).

  2. International Agency for Cancer Research. Prostate cancer: estimated incidence, mortality & prevalence, 2012 [online], (2014).

  3. Mohler, J. et al. NCCN clinical practice guidelines in oncology: prostate cancer. J. Natl Compr. Canc. Netw. 8, 162–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Nichol, A. M., Warde, P. & Bristow, R. G. Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy: clinical and translational issues. Cancer 104, 891–905 (2005).

    Article  PubMed  Google Scholar 

  5. D'Amico, A. V. et al. Optimizing patient selection for dose escalation techniques using the prostate-specific antigen level, biopsy gleason score, and clinical T-stage. Int. J. Radiat. Oncol. Biol. Phys. 45, 1227–1233 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez, D. J., Nielsen, M. E., Han, M. & Partin, A. W. Contemporary evaluation of the D'amico risk classification of prostate cancer. Urology 70, 931–935 (2007).

    Article  PubMed  Google Scholar 

  7. Montironi, R. et al. Consensus statement with recommendations on active surveillance inclusion criteria and definition of progression in men with localized prostate cancer: the critical role of the pathologist. Virchows Arch. 465, 623–628 (2014).

    Article  PubMed  Google Scholar 

  8. Magi-Galluzzi, C. et al. International Society of Urological Pathology (ISUP) Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens. Working group 3: extraprostatic extension, lymphovascular invasion and locally advanced disease. Mod. Pathol. 24, 26–38 (2011).

    Article  PubMed  Google Scholar 

  9. Zelefsky, M. J. et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 84, 125–129 (2012).

    Article  PubMed  Google Scholar 

  10. Heemsbergen, W. D. et al. Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 Gy versus 78 Gy. Int. J. Radiat. Oncol. Biol. Phys. 67, 1418–1424 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. de Crevoisier, R. et al. Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 62, 965–973 (2005).

    Article  PubMed  Google Scholar 

  12. Mendenhall, N. P. et al. Five-year outcomes from 3 prospective trials of image-guided proton therapy for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 596–602 (2014).

    Article  PubMed  Google Scholar 

  13. Zaorsky, N. G. et al. Evolution of advanced technologies in prostate cancer radiotherapy. Nat. Rev. Urol. 10, 565–579 (2013).

    Article  PubMed  Google Scholar 

  14. Morgan, P. B. et al. Timing of biochemical failure and distant metastatic disease for low-, intermediate-, and high-risk prostate cancer after radiotherapy. Cancer 110, 68–80 (2007).

    Article  PubMed  Google Scholar 

  15. D'Amico, A. V., Cote, K., Loffredo, M., Renshaw, A. A. & Schultz, D. Determinants of prostate cancer specific survival following radiation therapy during the prostate specific antigen era. J. Urol. 170, S42–S47 (2003).

    Article  PubMed  Google Scholar 

  16. Gilbert, S. M., Kuo, Y. F. & Shahinian, V. B. Prevalent and incident use of androgen deprivation therapy among men with prostate cancer in the United States. Urol. Oncol. 29, 647–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Berg, A. et al. Impact of disseminated tumor cells in bone marrow at diagnosis in patients with nonmetastatic prostate cancer treated by definitive radiotherapy. Int. J. Cancer 120, 1603–1609 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Armstrong, A. J. Biomarkers in castration-resistant prostate cancer. Clin. Adv. Hematol. Oncol. 12, 115–118 (2014).

    PubMed  Google Scholar 

  21. Kohli, M., Qin, R., Jimenez, R. & Dehm, S. M. Biomarker-based targeting of the androgen-androgen receptor axis in advanced prostate cancer. Adv. Urol. http://dx.doi.org/10.1155/2012/781459 (2012).

  22. Carducci, M. Intermediate Clinical Endpoint of Prostate Cancer (ICECaP) Effort. ASCO University [online], (2013).

    Google Scholar 

  23. Buyyounouski, M. K., Pickles, T., Kestin, L. L., Allison, R. & Williams, S. G. Validating the interval to biochemical failure for the identification of potentially lethal prostate cancer. J. Clin. Oncol. 30, 1857–1863 (2012).

    Article  PubMed  Google Scholar 

  24. Bolla, M. et al. Duration of androgen suppression in the treatment of prostate cancer. N. Engl. J. Med. 360, 2516–2527 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Souhami, L., Bae, K., Pilepich, M. & Sandler, H. Impact of the duration of adjuvant hormonal therapy in patients with locally advanced prostate cancer treated with radiotherapy: a secondary analysis of RTOG 85–31 J. Clin. Oncol. 27, 2137–2143 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pilepich, M. V. et al. Phase III radiation therapy oncology group (RTOG) trial 86–10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 50, 1243–1252 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Warde, P. et al. Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378, 2104–2111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolla, M. et al. External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol. 11, 1066–1073 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Michalski, J. et al. Clinical outcome of patients treated with 3D conformal radiation therapy (3D-CRT) for prostate cancer on RTOG 9406. Int. J. Radiat. Oncol. Biol. Phys. 83, e363–70 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zelefsky, M. J. et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur. Urol. 60, 1133–1139 (2011).

    Article  PubMed  Google Scholar 

  31. Zumsteg, Z. S. et al. Short-term androgen-deprivation therapy improves prostate cancer-specific mortality in intermediate-risk prostate cancer patients undergoing dose-escalated external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 85, 1012–1017 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Zelefsky, M. J., Reuter, V. E., Fuks, Z., Scardino, P. & Shippy, A. Influence of local tumor control on distant metastases and cancer related mortality after external beam radiotherapy for prostate cancer. J. Urol. 179, 1368–1373 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zapatero, A. et al. Long-term versus short-term androgen deprivation combined with high-dose radiotherapy for intermediate and high-risk prostate cancer: A randomized controlled trial (DART01/05) [abstract 5038]. J. Clin. Oncol. 32 (Suppl.), 5s (2014).

    Google Scholar 

  34. Dearnaley, D. P. et al. Escalated-dose versus standard-dose conformal radiotherapy in prostate cancer: first results from the MRC RT01 randomised controlled trial. Lancet Oncol. 8, 475–487 (2007).

    Article  PubMed  Google Scholar 

  35. Hennequin, C. Radiation Therapy in Treating Patients Receiving Hormone Therapy for Prostate Cancer. Clinicaltrials.gov [online], (2009).

    Google Scholar 

  36. Nabid, A. Study on the Role of Hormonal Treatment for Two Dosage Levels of Prostate Radiation Therapy Versus Prostate Radiation Therapy Alone (PCS III). Clinicaltrials.gov [online], (2015).

    Google Scholar 

  37. Bolla, M. Radiation Therapy With or Without Bicalutamide and Goserelin in Treating Patients With Prostate Cancer. Clinicaltrials.gov [online], (2011).

    Google Scholar 

  38. Jereczek-Fossa, B. A. et al. Robotic image-guided stereotactic radiotherapy, for isolated recurrent primary, lymph node or metastatic prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 82, 889–897 (2012).

    Article  PubMed  Google Scholar 

  39. Singh, D. et al. Is there a favorable subset of patients with prostate cancer who develop oligometastases? Int. J. Radiat. Oncol. Biol. Phys. 58, 3–10 (2004).

    Article  PubMed  Google Scholar 

  40. Corbin, K. S., Hellman, S. & Weichselbaum, R. R. Extracranial oligometastases: a subset of metastases curable with stereotactic radiotherapy. J. Clin. Oncol. 31, 1384–1390 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Berkovic, P. et al. Salvage stereotactic body radiotherapy for patients with limited prostate cancer metastases: deferring androgen deprivation therapy. Clin. Genitourin. Cancer 11, 27–32 (2013).

    Article  PubMed  Google Scholar 

  42. Decaestecker, K. et al. Surveillance or metastasis-directed Therapy for OligoMetastatic Prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer http://dx.doi.org/10.1186/1471-2407-14–671.

  43. Crehange, G. et al. Salvage reirradiation for locoregional failure after radiation therapy for prostate cancer: Who, when, where and how? Cancer Radiother. 18, 524–534 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Valicenti, R. K. et al. Does hormone therapy reduce disease recurrence in prostate cancer patients receiving dose-escalated radiation therapy? An analysis of Radiation Therapy Oncology Group 94–06 Int. J. Radiat. Oncol. Biol. Phys. 79, 1323–1329 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. McGuire, S. E. et al. PSA response to neoadjuvant androgen deprivation therapy is a strong independent predictor of survival in high-risk prostate cancer in the dose-escalated radiation therapy era. Int. J. Radiat. Oncol. Biol. Phys. 85, e39–e46 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Vergis, R. et al. Expression of Bcl-2, p53, and MDM2 in localized prostate cancer with respect to the outcome of radical radiotherapy dose escalation. Int. J. Radiat. Oncol. Biol. Phys. 78, 35–41 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Lilleby, W., Stensvold, A., Mills, I. G. & Nesland, J. M. Disseminated tumor cells and their prognostic significance in nonmetastatic prostate cancer patients. Int. J. Cancer 133, 149–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Jung, Y. et al. Prevalence of prostate cancer metastases after intravenous inoculation provides clues into the molecular basis of dormancy in the bone marrow microenvironment. Neoplasia 14, 429–439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murray, N. P. et al. Redefining micrometastasis in prostate cancer—a comparison of circulating prostate cells, bone marrow disseminated tumor cells and micrometastasis: Implications in determining local or systemic treatment for biochemical failure after radical prostatectomy. Int. J. Mol. Med. 30, 896–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Thalgott, M. et al. Detection of circulating tumor cells in different stages of prostate cancer. J. Cancer Res. Clin. Oncol. 139, 755–763 (2013).

    Article  PubMed  Google Scholar 

  51. Goodman, O. B. Jr et al. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin. Genitourin. Cancer 9, 31–38 (2011).

    Article  PubMed  Google Scholar 

  52. Morris, M. J. et al. Monitoring the clinical outcomes in advanced prostate cancer: what imaging modalities and other markers are reliable? Semin. Oncol. 40, 375–392 (2013).

    Article  PubMed  Google Scholar 

  53. Loh, J. et al. Circulating tumor cell detection in high-risk non-metastatic prostate cancer. J. Cancer Res. Clin. Oncol. 140, 2157–2162 (2014).

    Article  PubMed  Google Scholar 

  54. Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Birkhauser, F. D. et al. Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur. Urol. 64, 953–960 (2013).

    Article  PubMed  Google Scholar 

  56. Eiber, M. et al. Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J. Magn. Reson. Imaging 33, 1160–1170 (2011).

    Article  PubMed  Google Scholar 

  57. Fox, J. J., Schoder, H. & Larson, S. M. Molecular imaging of prostate cancer. Curr. Opin. Urol. 22, 320–327 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Beauregard, J. M. & Pouliot, F. New developments in the imaging of metastatic prostate cancer. Curr. Opin. Support. Palliat. Care 8, 265–270 (2014).

    Article  PubMed  Google Scholar 

  59. Evangelista, L., Guttilla, A., Zattoni, F., Muzzio, P. C. & Zattoni, F. Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur. Urol. 63, 1040–1048 (2013).

    Article  PubMed  Google Scholar 

  60. Giovacchini, G. et al. 11C-choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J. Nucl. Med. 55, 233–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Sorensen, J., Owenius, R., Lax, M. & Johansson, S. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 40, 394–402 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Afshar-Oromieh, A. et al. PET imaging with a [68Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur. J. Nucl. Med. Mol. Imaging 40, 486–495 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Mansi, R., Fleischmann, A., Macke, H. R. & Reubi, J. C. Targeting GRPR in urological cancers—from basic research to clinical application. Nat. Rev. Urol. 10, 235–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Beattie, B. J. et al. Pharmacokinetic assessment of the uptake of 16beta-18F-fluoro-5alpha-dihydrotestosterone (FDHT) in prostate tumors as measured by PET. J. Nucl. Med. 51, 183–192 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Cuzick, J. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br. J. Cancer 106, 1095–1099 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Knezevic, D. et al. Analytical validation of the Oncotype DX prostate cancer assay - a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics http://dx.doi.org/10.1186/1471-2164-14–690.

  67. Erho, N. et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS ONE http://dx.doi.org/10.1371/journal.pone.0066855.

  68. McDunn, J. E. et al. Metabolomic signatures of aggressive prostate cancer. Prostate 73, 1547–1560 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Saylor, P. J., Karoly, E. D. & Smith, M. R. Prospective study of changes in the metabolomic profiles of men during their first three months of androgen deprivation therapy for prostate cancer. Clin. Cancer Res. 18, 3677–3685 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jung, K. et al. Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma. Int. J. Cancer 133, 2914–2924 (2013).

    CAS  PubMed  Google Scholar 

  71. Jin, R. et al. NF-kappaB gene signature predicts prostate cancer progression. Cancer Res. 74, 2763–2772 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Freedland, S. J. et al. Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 86, 848–853 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fraser, M., Berlin, A., Bristow, R. G. & van der Kwast, T. Genomic, pathological, and clinical heterogeneity as drivers of personalized medicine in prostate cancer. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2013.10.020.

  74. Ranasinghe, W. K. et al. The role of hypoxia-inducible factor 1alpha in determining the properties of castrate-resistant prostate cancers. PLoS ONE http://dx.doi.org/10.1371/journal.pone.0054251.

  75. Ranasinghe, W. K. et al. The effects of nonspecific HIF1alpha inhibitors on development of castrate resistance and metastases in prostate cancer. Cancer Med. 3, 245–251 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Al-Ubaidi, F. L. et al. Castration therapy results in decreased Ku70 levels in prostate cancer. Clin. Cancer Res. 19, 1547–1556 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Yapp, D. T. et al. Non-invasive evaluation of tumour hypoxia in the Shionogi tumour model for prostate cancer with 18F-EF5 and positron emission tomography. BJU Int. 99, 1154–1160 (2007).

    Article  PubMed  Google Scholar 

  78. Milosevic, M. et al. Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res. 18, 2108–2114 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Bristow, R. G. & Hill, R. P. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat. Rev. Cancer 8, 180–192 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Luoto, K. R., Kumareswaran, R. & Bristow, R. G. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 4, http://dx.doi.org/10.1186/2041-9414-4-5 (2013).

  81. Chan, N., Milosevic, M. & Bristow, R. G. Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies. Future Oncol. 3, 329–341 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Milosevic, M. et al. Androgen withdrawal in patients reduces prostate cancer hypoxia: implications for disease progression and radiation response. Cancer Res. 67, 6022–6025 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Polkinghorn, W. R. et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov. 3, 1245–1253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Goodwin, J. F. et al. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov. 3, 1254–1271 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Isaacs, J. T. et al. Androgen regulation of programmed death of normal and malignant prostatic cells. J. Androl. 13, 457–464 (1992).

    CAS  PubMed  Google Scholar 

  86. Drake, C. G. Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 10, 580–593 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Roden, A. C. et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 173, 6098–6108 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Kissick, H. T. et al. Androgens alter T-cell immunity by inhibiting T-helper 1 differentiation. Proc. Natl Acad. Sci. USA 111, 9887–9892 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Xie, B. X. et al. The radiation response of androgen-refractory prostate cancer cell line C4–2 derived from androgen-sensitive cell line LNCaP. Asian J. Androl. 12, 405–414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Locke, J. A. et al. NKX3.1 haploinsufficiency is prognostic for prostate cancer relapse following surgery or image-guided radiotherapy. Clin. Cancer Res. 18, 308–316 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Won, A. C., Gurney, H., Marx, G., De Souza, P. & Patel, M. I. Primary treatment of the prostate improves local palliation in men who ultimately develop castrate-resistant prostate cancer. BJU Int. 112, E250–E255 (2013).

    Article  PubMed  Google Scholar 

  92. Pinkawa, M. et al. Local prostate cancer radiotherapy after prostate-specific antigen progression during primary hormonal therapy. Radiat. Oncol. http://dx.doi.org/10.1186/1748-717X-7–209.

  93. Tabata, K. et al. Radiotherapy for oligometastases and oligo-recurrence of bone in prostate cancer. Pulm. Med. http://dx.doi.org/10.1155/2012/541656.

  94. Bristow, R. G., Berlin, A. & Dal Pra, A. An arranged marriage for precision medicine: hypoxia and genomic assays in localized prostate cancer radiotherapy. Br. J. Radiol. http://dx.doi.org/10.1259/bjr.20130753.

  95. Berlin, A. et al. Prognostic utility of cell cycle progession score in men with prostate cancer after primary external beam radiation therapy. In regard to Freedland et al. Int. J. Radiat. Oncol. Biol. Phys. 88, 237–240 (2014).

    Article  PubMed  Google Scholar 

  96. D'Amico, A. V. et al. Duration of short-course androgen suppression therapy and the risk of death as a result of prostate cancer. J. Clin. Oncol. 29, 4682–4687 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Khor, L. Y. et al. MDM2 and Ki-67 predict for distant metastasis and mortality in men treated with radiotherapy and androgen deprivation for prostate cancer: RTOG 92–02. J. Clin. Oncol. 27, 3177–3184 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Abdel-Wahab, M. et al. Influence of number of CAG repeats on local control in the RTOG 86–10 protocol. Am. J. Clin. Oncol. 29, 14–20 (2006).

    Article  PubMed  Google Scholar 

  99. Prensner, J. R. et al. The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex. Nat. Genet. 45, 1392–1398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lalonde, E. et al. Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study. Lancet Oncol. 15, 1521–1532 (2014).

    Article  PubMed  Google Scholar 

  101. Beltran, H. et al. Targeted next-generation sequencing of advanced prostate cancer identifies potential therapeutic targets and disease heterogeneity. Eur. Urol. 63, 920–926 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Marcelli, M. et al. Androgen receptor mutations in prostate cancer. Cancer Res. 60, 944–949 (2000).

    CAS  PubMed  Google Scholar 

  103. Miyamoto, D. T., Sequist, L. V. & Lee, R. J. Circulating tumour cells-monitoring treatment response in prostate cancer. Nat. Rev. Clin. Oncol. 11, 401–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Miyamoto, D. T. et al. Androgen receptor signaling in circulating tumor cells as a marker of hormonally responsive prostate cancer. Cancer Discov. 2, 995–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mitsiades, N. et al. Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors. Cancer Res. 72, 6142–6152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lawton, C. A. et al. Updated results of the phase III Radiation Therapy Oncology Group (RTOG) trial 85–31 evaluating the potential benefit of androgen suppression following standard radiation therapy for unfavorable prognosis carcinoma of the prostate. Int. J. Radiat. Oncol. Biol. Phys. 49, 937–946 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Denham, J. W. et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol. 12, 451–459 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Jones, C. U. et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N. Engl. J. Med. 365, 107–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Bolla, M. Six months hormonal treatment in addition to radiotherapy improves survival for men with localised prostate cancer. The ASCO Post [online], (2014).

    Google Scholar 

  110. Hanks, G. E. et al. Phase III trial of long-term adjuvant androgen deprivation after neoadjuvant hormonal cytoreduction and radiotherapy in locally advanced carcinoma of the prostate: the Radiation Therapy Oncology Group Protocol 92–02. J. Clin. Oncol. 21, 3972–3978 (2003).

    Article  CAS  PubMed  Google Scholar 

  111. Widmark, A. et al. Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373, 301–308 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Mottet, N., Peneau, M., Mazeron, J. J., Molinie, V. & Richaud, P. Addition of radiotherapy to long-term androgen deprivation in locally advanced prostate cancer: an open randomised phase 3 trial. Eur. Urol. 62, 213–219 (2012).

    Article  PubMed  Google Scholar 

  113. US National Library of Medicine. Clinicaltrials.gov [online], (2013).

  114. US National Library of Medicine Clinicaltrials.gov [online], (2013).

  115. US National Library of Medicine Clinicaltrials.gov [online], (2013).

  116. US National Library of Medicine. Clinicaltrials.gov [online], (2013).

  117. US National Library of Medicine Clinicaltrials.gov [online], (2013).

  118. US National Library of Medicine Clinicaltrials.gov [online], (2013).

  119. US National Library of Medicine Clinicaltrials.gov [online], (2014).

  120. Davis, I. & Williams, S. Enzalutamide in androgen deprivation therapy with radiation therapy for high risk, clinically localised, prostate cancer: a randomised phase III trial. ANZUP [online], (2014).

    Google Scholar 

  121. US National Library of Medicine Clinicaltrials.gov [online], (2014).

  122. Attard, G. et al. Combining Enzalutamide with Abiraterone, Prednisone, and Androgen Deprivation Therapy in the STAMPEDE Trial. Eur. Urol. [online], (2014).

  123. Michaelson, D. Phase III Trial of Dose Escalated Radiation Therapy and Standard Androgen Deprivation Therapy (ADT) with a GnRH Agonist vs. Dose Escalated Radiation Therapy and Enhanced ADT with a GnRH Agonist and TAK-700 for Men with High Risk Prostate Cancer. Clinicaltrials.gov [online], (2014).

    Google Scholar 

  124. Claessens, F. et al. Emerging mechanisms of enzalutamide resistance in prostate cancer. Nat. Rev. Urol. 11, 712–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  125. Rathkopf, D. E. et al. Phase I study of ARN-509, a novel antiandrogen, in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 31, 3525–3530 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fizazi, K. et al. Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): an open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial. Lancet Oncol. 15, 975–985 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Giacinti, S. et al. Resistance to abiraterone in castration-resistant prostate cancer: a review of the literature. Anticancer Res. 34, 6265–6269 (2014).

    CAS  PubMed  Google Scholar 

  128. D'Amico, A. V. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 280, 969–974 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.A.L., A.D.P. and R.G.B. researched the data for the article. J.A.L. and R.G.B. contributed to discussions of the content of the article and contributed equally to writing the article. R.G.B. assisted with writing the article, and all authors contributed to reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Robert G. Bristow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locke, J., Pra, A., Supiot, S. et al. Synergistic action of image-guided radiotherapy and androgen deprivation therapy. Nat Rev Urol 12, 193–204 (2015). https://doi.org/10.1038/nrurol.2015.50

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.50

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing