Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Are androgen receptor variants a substitute for the full-length receptor?

Key Points

  • Truncated androgen receptor splice variants (AR-Vs) can resist androgen deprivation therapy

  • AR-Vs have an important role in the progression of prostate cancer to castration-resistant prostate cancer

  • AR-Vs could mediate resistance to prostate cancer therapies

  • Considering cell-specific and AR-V-specific transcriptional programmes, the repertoire of AR-V target genes is likely to be highly complex and overlap with known androgen-regulated genes

Abstract

Androgen receptor splice variants (AR-Vs)—which are expressed in castration-resistant prostate cancer (CRPC) cell lines and clinical samples—lack the C-terminal ligand-binding domain and are constitutively active. AR-Vs are, therefore, resistant to traditional androgen deprivation therapy (ADT). AR-Vs are induced by several mechanisms, including ADT, and might contribute to the progression of CRPC and resistance to ADT. AR-Vs could represent a novel therapeutic target for prostate cancer, especially in CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The AR gene locus, AR-FL and AR-Vs.
Figure 2: Hypothetical model of the regulation of gene expression by AR-FL and AR-Vs in prostate cancer cells.

Similar content being viewed by others

References

  1. Siegel, R., Ma, J., Zou, Z. & Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).

    Article  Google Scholar 

  2. Attard, G., Cooper, C. S. & de Bono, J. S. Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16, 458–462 (2009).

    Article  CAS  Google Scholar 

  3. Debes, J. D. & Tindall, D. J. Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med. 351, 1488–1490 (2004).

    Article  CAS  Google Scholar 

  4. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    Article  CAS  Google Scholar 

  5. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    Article  Google Scholar 

  6. Heinlein, C. A. & Chang, C. Androgen receptor in prostate cancer. Endocr. Rev. 25, 276–308 (2004).

    Article  CAS  Google Scholar 

  7. Gottlieb, B., Beitel, L. K., Nadarajah, A., Paliouras, M. & Trifiro, M. The androgen receptor gene mutations database: 2012 update. Hum. Mutat. 33, 887–894 (2012).

    Article  CAS  Google Scholar 

  8. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  Google Scholar 

  9. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  Google Scholar 

  10. Buchanan, G., Irvine, R. A., Coetzee, G. A. & Tilley, W. D. Contribution of the androgen receptor to prostate cancer predisposition and progression. Cancer Metastasis Rev. 20, 207–223 (2001).

    Article  CAS  Google Scholar 

  11. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    Article  CAS  Google Scholar 

  12. van der Steen, T., Tindall, D. J. & Huang, H. Posttranslational modification of the androgen receptor in prostate cancer. Int. J. Mol. Sci. 14, 14833–14859 (2013).

    Article  Google Scholar 

  13. Bain, D. L., Heneghan, A. F., Connaghan-Jones, K. D. & Miura, M. T. Nuclear receptor structure: implications for function. Annu. Rev. Physiol. 69, 201–220 (2007).

    Article  CAS  Google Scholar 

  14. Dehm, S. M. & Tindall, D. J. Alternatively spliced androgen receptor variants. Endocr. Relat Cancer 18, R183–R196 (2011).

    Article  CAS  Google Scholar 

  15. Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L. & Tindall, D. J. Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res. 68, 5469–5477 (2008).

    Article  CAS  Google Scholar 

  16. Guo, Z. et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res. 69, 2305–2313 (2009).

    Article  CAS  Google Scholar 

  17. Hu, R. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res. 69, 16–22 (2009).

    Article  CAS  Google Scholar 

  18. Sun, S. et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J. Clin. Invest. 120, 2715–2730 (2010).

    Article  CAS  Google Scholar 

  19. Watson, P. A. et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc. Natl Acad. Sci. USA 107, 16759–16765 (2010).

    Article  CAS  Google Scholar 

  20. Marcias, G. et al. Identification of novel truncated androgen receptor (AR) mutants including unreported pre-mRNA splicing variants in the 22Rv1 hormone-refractory prostate cancer (PCa) cell line. Hum. Mutat. 31, 74–80 (2010).

    Article  CAS  Google Scholar 

  21. Hu, R., Isaacs, W. B. & Luo, J. A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 71, 1656–1667 (2011).

    Article  CAS  Google Scholar 

  22. Yang, X. et al. Novel membrane-associated androgen receptor splice variant potentiates proliferative and survival responses in prostate cancer cells. J. Biol. Chem. 286, 36152–36160 (2011).

    Article  CAS  Google Scholar 

  23. Jagla, M. et al. A splicing variant of the androgen receptor detected in a metastatic prostate cancer exhibits exclusively cytoplasmic actions. Endocrinology 148, 4334–4343 (2007).

    Article  CAS  Google Scholar 

  24. Ceraline, J. et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int. J. Cancer 108, 152–157 (2004).

    Article  CAS  Google Scholar 

  25. Hu, D. G. et al. Identification of Androgen Receptor Splice Variant Transcripts in Breast Cancer Cell Lines and Human Tissues. Horm. Cancer 5, 61–71 (2014).

    Article  CAS  Google Scholar 

  26. Libertini, S. J. et al. Evidence for calpain-mediated androgen receptor cleavage as a mechanism for androgen independence. Cancer Res. 67, 9001–9005 (2007).

    Article  CAS  Google Scholar 

  27. Chen, H. et al. ERK regulates calpain 2-induced androgen receptor proteolysis in CWR22 relapsed prostate tumor cell lines. J. Biol. Chem. 285, 2368–2374 (2010).

    Article  CAS  Google Scholar 

  28. Li, Y. et al. Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res. 71, 2108–2117 (2011).

    Article  CAS  Google Scholar 

  29. Li, Y. et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 31, 4759–4767 (2012).

    Article  CAS  Google Scholar 

  30. Nyquist, M. D. et al. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc. Natl Acad. Sci. USA 110, 17492–17497 (2013).

    Article  CAS  Google Scholar 

  31. Liu, L. L. et al. Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 33, 3140–3150 (2014).

    Article  CAS  Google Scholar 

  32. Yu, Z. et al. Rapid Induction of Androgen Receptor Splice Variants by Androgen Deprivation in Prostate Cancer. Clin. Cancer Res. 20, 1590–1600 (2014).

    Article  CAS  Google Scholar 

  33. Bitting, R. L., Schaeffer, D., Somarelli, J. A., Garcia-Blanco, M. A. & Armstrong, A. J. The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev. 33, 441–468 (2014).

    Article  CAS  Google Scholar 

  34. Cottard, F. et al. Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS ONE 8, e63466 (2013).

    Article  CAS  Google Scholar 

  35. Liu, G. et al. AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia 15, 1009–1017 (2013).

    Article  CAS  Google Scholar 

  36. Sun, F. et al. Androgen Receptor Splice Variant AR3 Promotes Prostate Cancer via Modulating Expression of Autocrine/Paracrine Factors. J. Biol. Chem. 289, 1529–1539 (2014).

    Article  CAS  Google Scholar 

  37. Mostaghel, E. A. et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin. Cancer Res. 17, 5913–5925 (2011).

    Article  CAS  Google Scholar 

  38. Li, Y. et al. Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res. 73, 483–489 (2013).

    Article  CAS  Google Scholar 

  39. Cao, B. et al. Androgen receptor splice variants activating the full-length receptor in mediating resistance to androgen-directed therapy. Oncotarget 5, 1646–1656 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Hornberg, E. et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS ONE 6, e19059 (2011).

    Article  Google Scholar 

  41. Zhang, X. et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS ONE 6, http://dx.doi.org/10.1371/journal.pone.0027970 (2011).

  42. Zhao, H. et al. Transcript levels of androgen receptor variant AR-V1 or AR-V7 do not predict recurrence in patients with prostate cancer at indeterminate risk for progression. J. Urol. 188, 2158–2164 (2012).

    Article  CAS  Google Scholar 

  43. Antonarakis, E. S. et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    Article  Google Scholar 

  44. Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol. Endocrinol. 22, 2229–2240 (2008).

    Article  CAS  Google Scholar 

  45. Cardillo, M. R. & Ippoliti, F. IL-6, IL-10 and HSP-90 expression in tissue microarrays from human prostate cancer assessed by computer-assisted image analysis. Anticancer Res. 26, 3409–3416 (2006).

    CAS  PubMed  Google Scholar 

  46. O'Malley, K. J. et al. Hsp90 inhibitor 17-AAG inhibits progression of LuCaP35 xenograft prostate tumors to castration resistance. Prostate 72, 1117–1123 (2012).

    Article  CAS  Google Scholar 

  47. Centenera, M. M. et al. Evidence for efficacy of new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumors. Clin. Cancer Res. 18, 3562–3570 (2012).

    Article  CAS  Google Scholar 

  48. Gillis, J. L. et al. Constitutively-active androgen receptor variants function independently of the HSP90 chaperone but do not confer resistance to HSP90 inhibitors. Oncotarget 4, 691–704 (2013).

    Article  Google Scholar 

  49. Shafi, A. A., Cox, M. B. & Weigel, N. L. Androgen receptor splice variants are resistant to inhibitors of Hsp90 and FKBP52, which alter androgen receptor activity and expression. Steroids 78, 548–554 (2013).

    Article  CAS  Google Scholar 

  50. Thadani-Mulero, M. et al. Androgen Receptor Splice Variants Determine Taxane Sensitivity in Prostate Cancer. Cancer Res. 74, 2270–2282 (2014).

    Article  CAS  Google Scholar 

  51. Hu, R. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res. 72, 3457–3462 (2012).

    Article  CAS  Google Scholar 

  52. Lu, J. et al. The cistrome and gene signature of androgen receptor splice variants in castration-resistant prostate cancer cells. J. Urol. http://dx.doi.org/10.1016/j.juro.2014.08.043 (2014).

  53. Chmelar, R., Buchanan, G., Need, E. F., Tilley, W. & Greenberg, N. M. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer. Int. J. Cancer 120, 719–733 (2007).

    Article  CAS  Google Scholar 

  54. Streicher, W. et al. AR-Q640X, a model to study the effects of constitutively active C-terminally truncated AR variants in prostate cancer cells. World J. Urol. 30, 333–339 (2012).

    Article  CAS  Google Scholar 

  55. Andersen, R. J. et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer Cell 17, 535–546 (2010).

    Article  CAS  Google Scholar 

  56. Myung, J. K. et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J. Clin. Invest. 123, 2948–2960 (2013).

    Article  CAS  Google Scholar 

  57. Bohrer, L. R. et al. FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants. Prostate 73, 1017–1027 (2013).

    Article  CAS  Google Scholar 

  58. Lim, M. et al. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS Chem. Biol. 9, 692–702 (2014).

    Article  CAS  Google Scholar 

  59. Li, H. et al. Discovery of Small-Molecule Inhibitors Selectively Targeting the DNA-Binding Domain of the Human Androgen Receptor. J. Med. Chem. 57, 6458–6467 (2014).

    Article  CAS  Google Scholar 

  60. Dalal, K. et al. Selectively Targeting the DNA Binding Domain of the Androgen Receptor as a Prospective Therapy for Prostate Cancer. J. Biol. Chem. http://dx.doi.org/10.1074/jbc.A114.553818 (2014).

  61. Liu, C. et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin. Cancer Res. 20, 3198–3210 (2014).

    Article  CAS  Google Scholar 

  62. Wu, K. et al. The role of DAB2IP in androgen receptor activation during prostate cancer progression. Oncogene 33, 1954–1963 (2014).

    Article  CAS  Google Scholar 

  63. Amin, K. S. et al. A naturally derived small molecule disrupts ligand-dependent and ligand-independent androgen receptor signaling in human prostate cancer cells. Mol. Cancer Ther. 13, 341–352 (2014).

    Article  CAS  Google Scholar 

  64. Lai, K. P. et al. New therapeutic approach to suppress castration-resistant prostate cancer using ASC-J9 via targeting androgen receptor in selective prostate cells. Am. J. Pathol. 182, 460–473 (2013).

    Article  CAS  Google Scholar 

  65. Yamashita, S. et al. ASC-J9 suppresses castration-resistant prostate cancer growth through degradation of full-length and splice variant androgen receptors. Neoplasia 14, 74–83 (2012).

    Article  CAS  Google Scholar 

  66. Stope, M. B. et al. Shortened isoforms of the androgen receptor are regulated by the cytoprotective heat-shock protein HSPB1 and the tumor-suppressive microRNA miR-1 in prostate cancer cells. Anticancer Res. 33, 4921–4926 (2013).

    CAS  PubMed  Google Scholar 

  67. Peacock, S. O., Fahrenholtz, C. D. & Burnstein, K. L. Vav3 Enhances Androgen Receptor Splice Variant Activity and Is Critical for Castration-Resistant Prostate Cancer Growth and Survival. Mol. Endocrinol. 26, 1967–1979 (2012).

    Article  CAS  Google Scholar 

  68. Nadiminty, N. et al. NF-kappaB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants. Mol. Cancer Ther. 12, 1629–1637 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the discussion of content and to the review and editing of the article before submission. J.L. wrote the article.

Corresponding author

Correspondence to Donald J. Tindall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., der Steen, T. & Tindall, D. Are androgen receptor variants a substitute for the full-length receptor?. Nat Rev Urol 12, 137–144 (2015). https://doi.org/10.1038/nrurol.2015.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2015.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing