Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mediators of chronic pelvic pain syndrome

Subjects

Key Points

  • Chronic pelvic pain syndrome (CPPS) is the most common classification of prostatitis and affects up to 16% of men at some point in their lives

  • CPPS is classified as an abacterial disease at time of diagnoses but acute bacterial infection might initiate inflammation and development of pain

  • Loss of regulation and suppression of CD4+ T-cell activity might result in constitutively active mast cells and loss of tolerance in CPPS

  • Mast-cell-released factors, such as tryptase and nerve growth factor, might mediate both inflammation and neural sensitization

  • CPPS has a complex aetiology, with evidence suggesting interplay between T cells, mast cells and neurons in the development of autoimmunity

Abstract

The cause of chronic pelvic pain syndrome (CPPS) has yet to be established. Since the late 1980s, cytokine, chemokine, and immunological classification studies using human samples have focused on identifying biomarkers for CPPS, but no diagnostically beneficial biomarkers have been identified, and these studies have done little to deepen our understanding of the mechanisms underlying chronic prostatic pain. Given the large number of men thought to be affected by this condition and the ineffective nature of current treatments, there is a pressing need to elucidate these mechanisms. Prostatitis types IIIa and IIIb are classified according to the presence of pain without concurrent presence of bacteria; however, it is becoming more evident that, although levels of bacteria are not directly associated with levels of pain, the presence of bacteria might act as the initiating factor that drives primary activation of mast-cell-mediated inflammation in the prostate. Mast cell activation is also known to suppress regulatory T cell (Treg) control of self-tolerance and also activate neural sensitization. This combination of established autoimmunity coupled with peripheral and central neural sensitization can result in the development of multiple symptoms, including pelvic pain and bladder irritation. Identifying these mechanisms as central mediators in CPPS offers new insight into the prospective treatment of the disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hypothetical model of chronic pelvic pain syndrome.
Figure 2: Hypothetical schematic representation of a modulated immune system in CPPS

Similar content being viewed by others

References

  1. Krieger, J. N., Nyberg, L. Jr & Nickel, J. C. NIH consensus definition and classification of prostatitis. JAMA 282, 236–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Mahal, B. A. et al. The role of phenotyping in chronic prostatitis/chronic pelvic pain syndrome. Curr. Urol. Rep. 12, 297–303 (2011).

    Article  PubMed  Google Scholar 

  3. True, L. D., Berger, R. E., Rothman, I., Ross, S. O. & Krieger, J. N. Prostate histopathology and the chronic prostatitis/chronic pelvic pain syndrome: a prospective biopsy study. J. Urol. 162, 2014–2018 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Collins, M. M. et al. Prevalence and correlates of prostatitis in the health professionals follow-up study cohort. J. Urol. 167, 1363–1366 (2002).

    Article  PubMed  Google Scholar 

  5. Nickel, J. C., Downey, J., Hunter, D. & Clark, J. Prevalence of prostatitis-like symptoms in a population based study using the National Institutes of Health chronic prostatitis symptom index. J. Urol. 165, 842–845 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tripp, D. A., Nickel, J. C., Ross, S., Mullins, C. & Stechyson, N. Prevalence, symptom impact and predictors of chronic prostatitis-like symptoms in Canadian males aged 16–19 years. BJU Int. 103, 1080–1084 (2009).

    Article  PubMed  Google Scholar 

  7. Ferris, J. A. et al. National prevalence of urogenital pain and prostatitis-like symptoms in Australian men using the National Institutes of Health Chronic Prostatitis Symptoms Index. BJU Int. 105, 373–379 (2010).

    Article  PubMed  Google Scholar 

  8. Liang, C. Z. et al. The prevalence of prostatitis-like symptoms in China. J. Urol. 182, 558–563 (2009).

    Article  PubMed  Google Scholar 

  9. Mehik, A., Hellstrom, P., Lukkarinen, O., Sarpola, A. & Jarvelin, M. Epidemiology of prostatitis in Finnish men: a population-based cross-sectional study. BJU Int. 86, 443–448 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Schaeffer, A. J. Epidemiology and evaluation of chronic pelvic pain syndrome in men. Int. J. Antimicrob. Agents 31 (Suppl. 1), S108–S111 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Ku, J. H., Kim, S. W. & Paick, J. S. Quality of life and psychological factors in chronic prostatitis/chronic pelvic pain syndrome. Urology 66, 693–701 (2005).

    Article  PubMed  Google Scholar 

  12. Konkle, K. S. & Clemens, J. Q. New paradigms in understanding chronic pelvic pain syndrome. Curr. Urol. Rep. 12, 278–283 (2011).

    Article  PubMed  Google Scholar 

  13. Pontari, M. & Giusto, L. New developments in the diagnosis and treatment of chronic prostatitis/chronic pelvic pain syndrome. Curr. Opin. Urol. 23, 565–569 (2013).

    Article  PubMed  Google Scholar 

  14. Schaeffer, A. J. Etiology and management of chronic pelvic pain syndrome in men. Urology 63, 75–84 (2004).

    Article  PubMed  Google Scholar 

  15. Motrich, R. D. et al. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum. Reprod. 20, 2567–2572 (2005).

    Article  PubMed  Google Scholar 

  16. Wagenlehner, F. M. et al. National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) symptom evaluation in multinational cohorts of patients with chronic prostatitis/chronic pelvic pain syndrome. Eur. Urol. 63, 953–959 (2013).

    Article  PubMed  Google Scholar 

  17. Walz, J. et al. Impact of chronic prostatitis-like symptoms on the quality of life in a large group of men. BJU Int. 100, 1307–1311 (2007).

    Article  PubMed  Google Scholar 

  18. Davis, S. N., Binik, Y. M., Amsel, R. & Carrier, S. A subtype-based analysis of urological chronic pelvic pain syndrome in men. J. Urol. 190, 118–123 (2013).

    Article  PubMed  Google Scholar 

  19. Le, B. V. & Schaeffer, A. J. Genitourinary pain syndromes, prostatitis, and lower urinary tract symptoms. Urol. Clin. North Am. 36, 527–536 (2009).

    Article  PubMed  Google Scholar 

  20. Anderson, R. U., Wise, D., Sawyer, T. & Chan, C. A. Sexual dysfunction in men with chronic prostatitis/chronic pelvic pain syndrome: improvement after trigger point release and paradoxical relaxation training. J. Urol. 176, 1534–1539 (2006).

    Article  PubMed  Google Scholar 

  21. Magri, V. et al. Use of the UPOINT chronic prostatitis/chronic pelvic pain syndrome classification in European patient cohorts: sexual function domain improves correlations. J. Urol. 184, 2339–2345 (2010).

    Article  PubMed  Google Scholar 

  22. Kaplan, S. A. et al. Etiology of voiding dysfunction in men less than 50 years of age. Urology 47, 836–839 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Kwon, J. K. & Chang, I. H. Pain, catastrophizing, and depression in chronic prostatitis/chronic pelvic pain syndrome. Int. Neurourol. J. 17, 48–58 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anderson, R. U., Sawyer, T., Wise, D., Morey, A. & Nathanson, B. H. Painful myofascial trigger points and pain sites in men with chronic prostatitis/chronic pelvic pain syndrome. J. Urol. 182, 2753–2758 (2009).

    Article  PubMed  Google Scholar 

  25. Hedelin, H. H. Evaluation of a modification of the UPOINT clinical phenotype system for the chronic pelvic pain syndrome. Scand. J. Urol. Nephrol. 43, 373–376 (2009).

    Article  PubMed  Google Scholar 

  26. Shoskes, D. A., Nickel, J. C. & Kattan, M. W. Phenotypically directed multimodal therapy for chronic prostatitis/chronic pelvic pain syndrome: a prospective study using UPOINT. Urology 75, 1249–1253 (2010).

    Article  PubMed  Google Scholar 

  27. Nickel, J. C. & Shoskes, D. A. Phenotypic approach to the management of the chronic prostatitis/chronic pelvic pain syndrome. BJU Int. 106, 1252–1263 (2010).

    Article  PubMed  Google Scholar 

  28. Potts, J. M. & Payne, C. K. Urologic chronic pelvic pain. Pain 153, 755–758 (2012).

    Article  PubMed  Google Scholar 

  29. Tugcu, V. et al. A placebo-controlled comparison of the efficiency of triple- and monotherapy in category III B chronic pelvic pain syndrome (CPPS). Eur. Urol. 51, 1113–1118 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Baranowski, A. P. Urogenital/pelvic pain in men. Curr. Opin. Support. Palliat. Care 6, 213–219 (2012).

    Article  PubMed  Google Scholar 

  31. Rodriguez, M. A. et al. Evidence for overlap between urological and nonurological unexplained clinical conditions. J. Urol. 182, 2123–2131 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Samplaski, M. K., Li, J. & Shoskes, D. A. Clustering of UPOINT domains and subdomains in men with chronic prostatitis/chronic pelvic pain syndrome and contribution to symptom severity. J. Urol. 188, 1788–1793 (2012).

    Article  PubMed  Google Scholar 

  33. Shoskes, D. A., Prots, D., Karns, J., Horhn, J. & Shoskes, A. C. Greater endothelial dysfunction and arterial stiffness in men with chronic prostatitis/chronic pelvic pain syndrome—a possible link to cardiovascular disease. J. Urol. 186, 907–910 (2011).

    Article  PubMed  Google Scholar 

  34. Mendall, M. A. et al. Relation of Helicobacter pylori infection and coronary heart disease. Br. Heart J. 71, 437–439 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khorasani, B., Arab, A. M., Sedighi Gilani, M. A., Samadi, V. & Assadi, H. Transabdominal ultrasound measurement of pelvic floor muscle mobility in men with and without chronic prostatitis/chronic pelvic pain syndrome. Urology 80, 673–677 (2012).

    Article  PubMed  Google Scholar 

  36. Rudick, C. N. et al. Host-pathogen interactions mediating pain of urinary tract infection. J. Infect. Dis. 201, 1240–1249 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Motrich, R. D., Cuffini, C., Oberti, J. P., Maccioni, M. & Rivero, V. E. Chlamydia trachomatis occurrence and its impact on sperm quality in chronic prostatitis patients. J. Infect. 53, 175–183 (2006).

    Article  PubMed  Google Scholar 

  38. Wagenlehner, F. M. et al. Bacterial prostatitis. World J. Urol. 31, 711–716 (2013).

    Article  PubMed  Google Scholar 

  39. Doble, A. et al. The role of Chlamydia trachomatis in chronic abacterial prostatitis: a study using ultrasound guided biopsy. J. Urol. 141, 332–333 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. Doble, A. et al. A search for infectious agents in chronic abacterial prostatitis using ultrasound guided biopsy. Br. J. Urol. 64, 297–301 (1989).

    Article  CAS  PubMed  Google Scholar 

  41. Rudick, C. N. et al. Uropathogenic Escherichia coli induces chronic pelvic pain. Infect. Immun. 79, 628–635 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Sivick, K. E., Schaller, M. A., Smith, S. N. & Mobley, H. L. The innate immune response to uropathogenic Escherichia coli involves IL-17A in a murine model of urinary tract infection. J. Immunol. 184, 2065–2075 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Huang, B. R. et al. Interaction of inflammatory and anti-inflammatory responses in microglia by Staphylococcus aureus-derived lipoteichoic acid. Toxicol. Appl. Pharmacol. 269, 43–50 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Myles, I. A. et al. Signalling via the IL-20 receptor inhibits cutaneous production of IL-1beta and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat. Immunol. 14, 804–811 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karatas, O. F., Bayrak, O., Cimentepe, E. & Unal, D. An occult risk factor for chronic prostatitis: Helicobacter pylori. Med. Hypotheses 69, 963–964 (2007).

    Article  PubMed  Google Scholar 

  46. Karatas, O. F., Turkay, C., Bayrak, O., Cimentepe, E. & Unal, D. Helicobacter pylori seroprevalence in patients with chronic prostatitis: a pilot study. Scand. J. Urol. Nephrol. 44, 91–94 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Tomaskovic, I., Ruzic, B., Trnski, D. & Kraus, O. Chronic prostatitis/chronic pelvic pain syndrome in males may be an autoimmune disease, potentially responsive to corticosteroid therapy. Med. Hypotheses 72, 261–262 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Theyer, G. et al. Phenotypic characterization of infiltrating leucocytes in benign prostatic hyperplasia. Lab. Invest. 66, 96–107 (1992).

    CAS  PubMed  Google Scholar 

  49. Steiner, G. et al. Phenotype and function of peripheral and prostatic lymphocytes in patients with benign prostatic hyperplasia. J. Urol. 151, 480–484 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Bierhoff, E. et al. Morphological analogies of fetal prostate stroma and stromal nodules in BPH. Prostate 31, 234–240 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Kramer, G. et al. Increased expression of lymphocyte-derived cytokines in benign hyperplastic prostate tissue, identification of the producing cell types, and effect of differentially expressed cytokines on stromal cell proliferation. Prostate 52, 43–58 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Quick, M. L. et al. Th1-Th17 cells contribute to the development of uropathogenic Escherichia coli-induced chronic pelvic pain. PLoS ONE 8, e60987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carlson, T., Kroenke, M., Rao, P., Lane, T. E. & Segal, B. The Th17-ELR+ CXC chemokine pathway is essential for the development of central nervous system autoimmune disease. J. Exp. Med. 205, 811–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, H. L., Zheng, X. Y. & Zhu, J. Th1/Th2/Th17/Treg cytokines in Guillain-Barre syndrome and experimental autoimmune neuritis. Cytokine Growth Factor Rev. 24, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zielinski, C. E. et al. Pathogen-induced human TH17 cells produce IFN-gamma or IL-10 and are regulated by IL-1beta. Nature 484, 514–518 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Motrich, R. D., Maccioni, M., Riera, C. M. & Rivero, V. E. Autoimmune prostatitis: state of the art. Scand. J. Immunol. 66, 217–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Rudick, C. N., Schaeffer, A. J. & Thumbikat, P. Experimental autoimmune prostatitis induces chronic pelvic pain. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1268–R1275 (2008).

    Article  CAS  PubMed  Google Scholar 

  58. Maccioni, M., Rivero, V. E. & Riera, C. M. Prostatein (or rat prostatic steroid binding protein) is a major autoantigen in experimental autoimmune prostatitis. Clin. Exp. Immunol. 112, 159–165 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rivero, V., Carnaud, C. & Riera, C. M. Prostatein or steroid binding protein (PSBP) induces experimental autoimmune prostatitis (EAP) in NOD mice. Clin. Immunol. 105, 176–184 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Penna, G. et al. Spontaneous and prostatic steroid binding protein peptide-induced autoimmune prostatitis in the nonobese diabetic mouse. J. Immunol. 179, 1559–1567 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rivero, V. E., Cailleau, C., Depiante-Depaoli, M., Riera, C. M. & Carnaud, C. Non-obese diabetic (NOD) mice are genetically susceptible to experimental autoimmune prostatitis (EAP). J. Autoimmun. 11, 603–610 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Louvet, C. et al. Tyrosine kinase inhibitors reverse type 1 diabetes in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 105, 18895–18900 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gallegos, A. M. & Bevan, M. J. Driven to autoimmunity: the nod mouse. Cell 117, 149–151 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Kim, J. M. & Rudensky, A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol. Rev. 212, 86–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Bonomo, A., Kehn, P. J. & Shevach, E. M. Post-thymectomy autoimmunity: abnormal T-cell homeostasis. Immunol. Today 16, 61–67 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Taguchi, O. & Nishizuka, Y. Self tolerance and localized autoimmunity. Mouse models of autoimmune disease that suggest tissue-specific suppressor T cells are involved in self tolerance. J. Exp. Med. 165, 146–156 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Gallegos, A. M. & Bevan, M. J. Central tolerance: good but imperfect. Immunol. Rev. 209, 290–296 (2006).

    Article  PubMed  Google Scholar 

  68. Gallegos, A. M. & Bevan, M. J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Anderson, M. S. et al. Projection of an immunological self shadow within the thymus by the Aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Rizzi, M., Ferrera, F., Filaci, G. & Indiveri, F. Disruption of immunological tolerance: role of AIRE gene in autoimmunity. Autoimmun. Rev. 5, 145–147 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Ferrera, F. et al. AIRE gene polymorphisms in systemic sclerosis associated with autoimmune thyroiditis. Clin. Immunol. 122, 13–17 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Anderson, M. S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Villasenor, J., Benoist, C. & Mathis, D. AIRE and APECED: molecular insights into an autoimmune disease. Immunol. Rev. 204, 156–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Taguchi, O., Kojima, A. & Nishizuka, Y. Experimental autoimmune prostatitis after neonatal thymectomy in the mouse. Clin. Exp. Immunol. 60, 123–129 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Bonomo, A. et al. Pathogenesis of post-thymectomy autoimmunity. Role of syngeneic MLR-reactive T cells. J. Immunol. 154, 6602–6611 (1995).

    CAS  PubMed  Google Scholar 

  77. Setiady, Y. Y. et al. Physiologic self antigens rapidly capacitate autoimmune disease-specific polyclonal CD4+ CD25+ regulatory T cells. Blood 107, 1056–1062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. de Vries, V. C. et al. Mast cell degranulation breaks peripheral tolerance. Am. J. Transplant. 9, 2270–2280 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Shoskes, D. A., Albakri, Q., Thomas, K. & Cook, D. Cytokine polymorphisms in men with chronic prostatitis/chronic pelvic pain syndrome: association with diagnosis and treatment response. J. Urol. 168, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Shoskes, D. A. & Nickel, J. C. Quercetin for chronic prostatitis/chronic pelvic pain syndrome. Urol. Clin. North Am. 38, 279–284 (2011).

    Article  PubMed  Google Scholar 

  81. John, H. et al. Noninflammatory chronic pelvic pain syndrome: immunological study in blood, ejaculate and prostate tissue. Eur. Urol. 39, 72–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Penna, G. et al. Seminal plasma cytokines and chemokines in prostate inflammation: interleukin 8 as a predictive biomarker in chronic prostatitis/chronic pelvic pain syndrome and benign prostatic hyperplasia. Eur. Urol. 51, 524–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Orhan, I., Onur, R., Ilhan, N. & Ardicoglu, A. Seminal plasma cytokine levels in the diagnosis of chronic pelvic pain syndrome. Int. J. Urol. 8, 495–499 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Motrich, R. D. et al. Pathogenic consequences in semen quality of an autoimmune response against the prostate gland: from animal models to human disease. J. Immunol. 177, 957–967 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Khadra, A., Fletcher, P., Luzzi, G., Shattock, R. & Hay, P. Interleukin-8 levels in seminal plasma in chronic prostatitis/chronic pelvic pain syndrome and nonspecific urethritis. BJU Int. 97, 1043–1046 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. John, H. et al. Immunological alterations in the ejaculate of chronic prostatitis patients: clues for autoimmunity. Andrologia 35, 294–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Ludwig, M. et al. Immunocytological analysis of leucocyte subpopulations in urine specimens before and after prostatic massage. Eur. Urol. 39, 277–282 (2001).

    Article  CAS  PubMed  Google Scholar 

  88. Nickel, J. C. et al. Leucocytes and bacteria in men with chronic prostatitis/chronic pelvic pain syndrome compared to asymptomatic controls. J. Urol. 170, 818–822 (2003).

    Article  PubMed  Google Scholar 

  89. Breser, M. L., Motrich, R. D., Sanchez, L. R., Mackern-Oberti, J. P. & Rivero, V. E. Expression of CXCR3 on specific T cells is essential for homing to the prostate gland in an experimental model of chronic prostatitis/chronic pelvic pain syndrome. J. Immunol. 190, 3121–3133 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Batstone, G. R., Doble, A. & Gaston, J. S. Autoimmune T cell responses to seminal plasma in chronic pelvic pain syndrome (CPPS). Clin. Exp. Immunol. 128, 302–307 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kouiavskaia, D. V., Southwood, S., Berard, C. A., Klyushnenkova, E. N. & Alexander, R. B. T-cell recognition of prostatic peptides in men with chronic prostatitis/chronic pelvic pain syndrome. J. Urol. 182, 2483–2489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Motrich, R. D. et al. Presence of INFγ-secreting lymphocytes specific to prostate antigens in a group of chronic prostatitis patients. Clin. Immunol. 116, 149–157 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Ponniah, S., Arah, I. & Alexander, R. B. PSA is a candidate self-antigen in autoimmune chronic prostatitis/chronic pelvic pain syndrome. Prostate 44, 49–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Alexander, R. B., Brady, F., Leffell, M. S., Tsai, V. & Celis, E. Specific T cell recognition of peptides derived from prostate-specific antigen in patients with prostate cancer. Urology 51, 150–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Doble, A., Walker, M. M., Harris, J. R., Taylor-Robinson, D. & Witherow, R. O. Intraprostatic antibody deposition in chronic abacterial prostatitis. Br. J. Urol. 65, 598–605 (1990).

    Article  CAS  PubMed  Google Scholar 

  96. Thumbikat, P. et al. Prostate secretions from men with chronic pelvic pain syndrome inhibit proinflammatory mediators. J. Urol. 184, 1536–1542 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Jung, H., Toth, P. T., White, F. A. & Miller, R. J. Monocyte chemoattractant protein-1 functions as a neuromodulator in dorsal root ganglia neurons. J. Neurochem. 104, 254–263 (2008).

    CAS  PubMed  Google Scholar 

  98. Van Steenwinckel, J. et al. CCL2 released from neuronal synaptic vesicles in the spinal cord is a major mediator of local inflammation and pain after peripheral nerve injury. J. Neurosci. 31, 5865–5875 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Koch, A. E. et al. Macrophage inflammatory protein-1 alpha. A novel chemotactic cytokine for macrophages in rheumatoid arthritis. J. Clin. Invest. 93, 921–928 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Koch, A. E. et al. Enhanced production of the chemotactic cytokines interleukin-8 and monocyte chemoattractant protein-1 in human abdominal aortic aneurysms. Am. J. Pathol. 142, 1423–1431 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Ikeda, U., Matsui, K., Murakami, Y. & Shimada, K. Monocyte chemoattractant protein-1 and coronary artery disease. Clin. Cardiol. 25, 143–147 (2002).

    Article  PubMed  Google Scholar 

  102. Nishimura, T. et al. Study of macrophages in prostatic fluid from nonbacterial prostatitis patients: Relation between activation of macrophages and stage of prostatitis. Urol. Int. 46, 15–17 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, N., Rogers, T. J., Caterina, M. & Oppenheim, J. J. Proinflammatory chemokines, such as C-C chemokine ligand 3, desensitize mu-opioid receptors on dorsal root ganglia neurons. J. Immunol. 173, 594–599 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, N. et al. A proinflammatory chemokine, CCL3, sensitizes the heat- and capsaicin-gated ion channel TRPV1. Proc. Natl Acad. Sci. USA 102, 4536–4541 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Desireddi, N. V. et al. Monocyte chemoattractant protein-1 and macrophage inflammatory protein-1α as possible biomarkers for the chronic pelvic pain syndrome. J. Urol. 179, 1857–1862 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  106. White, F. A., Jung, H. & Miller, R. J. Chemokines and the pathophysiology of neuropathic pain. Proc. Natl Acad. Sci. USA 104, 20151–20158 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Quick, M. L. et al. CCL2 and CCL3 are essential mediators of pelvic pain in experimental autoimmune prostatitis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R580–R589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Heninger, A. K. et al. IL-7 abrogates suppressive activity of human CD4+CD25+FOXP3+ regulatory T cells and allows expansion of alloreactive and autoreactive T cells. J. Immunol. 189, 5649–5658 (2012).

    Article  CAS  PubMed  Google Scholar 

  109. Sayed, B. A., Christy, A., Quirion, M. R. & Brown, M. A. The master switch: the role of mast cells in autoimmunity and tolerance. Ann. Rev. Immunol. 26, 705–739 (2008).

    Article  CAS  Google Scholar 

  110. Walker, M. E., Hatfield, J. K. & Brown, M. A. New insights into the role of mast cells in autoimmunity: evidence for a common mechanism of action? Biochim. Biophys. Acta 1822, 57–65 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Kalesnikoff, J. & Galli, S. J. New developments in mast cell biology. Nat. Immunol. 9, 1215–1223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Metz, M. & Maurer, M. Mast cells--key effector cells in immune responses. Trends Immunol. 28, 234–241 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Rao, K. N. & Brown, M. A. Mast cells: multifaceted immune cells with diverse roles in health and disease. Ann. NY Acad. Sci. 1143, 83–104 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Hallgren, J. & Pejler, G. Biology of mast cell tryptase. An inflammatory mediator. FEBS J. 273, 1871–1895 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Kim, D. Y., Jeoung, D. & Ro, J. Y. Signalling pathways in the activation of mast cells cocultured with astrocytes and co-localization of both cells in experimental allergic encephalomyelitis. J. Immunol. 185, 273–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Sayed, B. A., Christy, A. L., Walker, M. E. & Brown, M. A. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment? J. Immunol. 184, 6891–6900 (2010).

    Article  CAS  PubMed  Google Scholar 

  117. Brenner, T., Soffer, D., Shalit, M. & Levi-Schaffer, F. Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J. Neurol. Sci. 122, 210–213 (1994).

    Article  CAS  PubMed  Google Scholar 

  118. Yeh, W. I., McWilliams, I. L. & Harrington, L. E. Autoreactive Tbet-positive CD4 T cells develop independent of classic Th1 cytokine signalling during experimental autoimmune encephalomyelitis. J. Immunol. 187, 4998–5006 (2011).

    Article  CAS  PubMed  Google Scholar 

  119. Fletcher, J. M., Lalor, S. J., Sweeney, C. M., Tubridy, N. & Mills, K. H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162, 1–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murphy, A. C., Lalor, S. J., Lynch, M. A. & Mills, K. H. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 24, 641–651 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Eller, K. et al. IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J. Immunol. 186, 83–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Steinman, L. Multiple sclerosis: a coordinated immunological attack against myelin in the central nervous system. Cell 85, 299–302 (1996).

    Article  CAS  PubMed  Google Scholar 

  123. Tanzola, M. B., Robbie-Ryan, M., Gutekunst, C. A. & Brown, M. A. Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol. 171, 4385–4391 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Thompson, A. J. et al. Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. BMJ 300, 631–634 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Johnson, D., Seeldrayers, P. A. & Weiner, H. L. The role of mast cells in demyelination. 1. Myelin proteins are degraded by mast cell proteases and myelin basic protein and P2 can stimulate mast cell degranulation. Brain Res. 444, 195–198 (1988).

    Article  CAS  PubMed  Google Scholar 

  126. Piconese, S. et al. Exacerbated experimental autoimmune encephalomyelitis in mast-cell-deficient Kit W-sh/W-sh mice. Lab. Invest. 91, 627–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  127. Lee, D. M. et al. Mast cells: a cellular link between autoantibodies and inflammatory arthritis. Science 297, 1689–1692 (2002).

    Article  CAS  PubMed  Google Scholar 

  128. Shin, K. et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J. Immunol. 182, 647–656 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Sawamukai, N. et al. Mast cell-derived tryptase inhibits apoptosis of human rheumatoid synovial fibroblasts via rho-mediated signalling. Arthritis Rheum. 62, 952–959 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Hueber, A. J. et al. Mast cells express IL-17A in rheumatoid arthritis synovium. J. Immunol. 184, 3336–3340 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Sandler, C. et al. Selective activation of mast cells in rheumatoid synovial tissue results in production of TNF-α, IL-1β and IL-1Ra. Inflamm. Res. 56, 230–239 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Brown, M. A., Sayed, B. A. & Christy, A. Mast cells and the adaptive immune response. J. Clin. Immunol. 28, 671–676 (2008).

    Article  PubMed  Google Scholar 

  133. Hong, G. U., Kim, N. G., Jeoung, D. & Ro, J. Y. Anti-CD40 Ab- or 8-oxo-dG-enhanced Treg cells reduce development of experimental autoimmune encephalomyelitis via downregulating migration and activation of mast cells. J. Neuroimmunol. 260, 60–73 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Piconese, S. et al. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Th17-cell differentiation. Blood 114, 2639–2648 (2009).

    Article  CAS  PubMed  Google Scholar 

  135. Forward, N. A., Furlong, S. J., Yang, Y., Lin, T. J. & Hoskin, D. W. Mast cells downregulate CD4+CD25+ T regulatory cell suppressor function via histamine H1 receptor interaction. J. Immunol. 183, 3014–3022 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Ganeshan, K. & Bryce, P. J. Regulatory T cells enhance mast cell production of IL-6 via surface-bound TGF-β. J. Immunol. 188, 594–603 (2012).

    Article  CAS  PubMed  Google Scholar 

  137. Rivero, V. E., Iribarren, P. & Riera, C. M. Mast cells in accessory glands of experimentally induced prostatitis in male Wistar rats. Clin. Immunol. Immunopathol. 74, 236–242 (1995).

    Article  CAS  PubMed  Google Scholar 

  138. Grimbaldeston, M. A. et al. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am. J. Pathol. 167, 835–848 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Palmer, H. S. et al. Protease-activated receptor 2 mediates the proinflammatory effects of synovial mast cells. Arthritis Rheum. 56, 3532–3540 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Bali, K. K. et al. Transcriptional mechanisms underlying sensitization of peripheral sensory neurons by Granulocyte-/Granulocyte-macrophage colony stimulating factors. Mol. Pain 9, 48 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Okuse, K. Pain signalling pathways: from cytokines to ion channels. Int. J. Biochem. Cell Biol. 39, 490–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Thacker, M. A., Clark, A. K., Marchand, F. & McMahon, S. B. Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth. Analg. 105, 838–847 (2007).

    Article  PubMed  Google Scholar 

  143. Pezet, S. & McMahon, S. B. Neurotrophins: mediators and modulators of pain. Annu. Rev. Neurosci. 29, 507–538 (2006).

    Article  CAS  PubMed  Google Scholar 

  144. Watanabe, T. et al. Nerve growth factor level in the prostatic fluid of patients with chronic prostatitis/chronic pelvic pain syndrome is correlated with symptom severity and response to treatment. BJU Int. 108, 248–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  145. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.F.M. and P.T. researched the literature, wrote, edited, and reviewed the article. A.J.S. made substantial contributions towards discussions of contents and reviewed the manuscript before submission.

Corresponding author

Correspondence to Praveen Thumbikat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, S., Schaeffer, A. & Thumbikat, P. Immune mediators of chronic pelvic pain syndrome. Nat Rev Urol 11, 259–269 (2014). https://doi.org/10.1038/nrurol.2014.63

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.63

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing