Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Fetal therapy for the treatment of congenital bladder neck obstruction

Abstract

Lower urinary tract obstruction (LUTO) comprises a heterogeneous group of pathologies associated with early-onset oligohydramnios and cystic renal disease that have high rates of perinatal morbidity (from renal disease) and mortality (from pulmonary hypoplasia). The use of prenatal detailed ultrasonography and fetal urine analysis has been only partially successful in identifying fetuses with LUTO with relatively good prognosis that would benefit from in utero therapy. The most common prenatal therapy is vesicoamniotic shunting. Newer techniques, such as fetal cystoscopy, have potential for enhancing prenatal triage and simultaneously delivering treatment. Vesicoamniotic shunting seems to improve perinatal survival, but whether this treatment or conservative management is used, the surviving children have a high rate of end-stage renal failure requiring dialysis and transplantation. Further investigation of long-term outcomes of vesicoamniotic shunting and fetal cystoscopy is hoped to delineate the risks and benefits of these prenatal treatments and inform management strategies.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prenatal ultrasonographic findings typical of lower urinary tract obstruction.
Figure 2: Prenatal vesicoamniotic shunt placement.
Figure 3: Effectiveness of antenatal intervention for the treatment of congenital lower urinary tract obstruction.
Figure 4: Fetal cystoscopy for visualization of the fetal bladder neck.

References

  1. Lewis, M. A. Demography of renal disease in childhood. Semin. Fetal Neonatal Med. 13, 118–124 (2008).

    Article  Google Scholar 

  2. Sarhan, O. et al. Long-term outcome of prenatally detected posterior urethral valves: single center study of 65 cases managed by primary valve ablation. J. Urol. 179, 307–312 (2008).

    Article  Google Scholar 

  3. Ylinen, E., Ala-Houhala, M. & Wikström, S. Prognostic factors of posterior urethral valves and the role of antenatal detection. Pediatr. Nephrol. 19, 874–879 (2004).

    PubMed  Google Scholar 

  4. Parkhouse, H. F. et al. Long-term outcome of boys with posterior urethral valves. Br. J. Urol. 62, 59–62 (1988).

    Article  CAS  Google Scholar 

  5. Anumba, D. O., Scott J. E., Plant, N. D. & Robson S. C. Diagnosis and outcome of fetal lower urinary tract obstruction in the northern region of England. Prenat. Diagn. 25, 7–13 (2005).

    Article  Google Scholar 

  6. Malin G., Tonks, A. M., Morris R. K., Gardosi J. & Kilby, M. D. Congenital lower urinary tract obstruction: a population-based epidemiological study. BJOG 119, 1455–1464 (2012).

    Article  CAS  Google Scholar 

  7. Knox, W. F. & Barson, A. J. Pulmonary hypoplasia in a regional perinatal unit. Early Hum. Dev. 14, 33–42 (1986).

    Article  CAS  Google Scholar 

  8. Liao, A. W., Sebire, N. J., Geerts, L., Cicero, S. & Nicolaides, K. H. Megacystis at 10–14 weeks of gestation: chromosomal defects and outcome according to bladder length. Ultrasound Obstet. Gynecol. 21, 338–341 (2003).

    Article  CAS  Google Scholar 

  9. Montemarano, H., Bulas, D. I., Rushton, H. G. & Selby, D. Bladder distension and pyelectasis in the male fetus: causes, comparisons, and contrasts. J. Ultrasound Med. 17, 743–749 (1998).

    Article  CAS  Google Scholar 

  10. Yiee, J. & Wilcox, D. Abnormalities of the fetal bladder. Semin. Fetal Neonatal Med. 13, 164–170 (2008).

    Article  Google Scholar 

  11. Wickstrom, E. A., Thangavelu, M., Parilla, B. V., Tamura, R. K. & Sabbagha, R. E. A prospective study of the association between isolated fetal pyelectasis and chromosome abnormality. Obstet. Gynecol. 88, 379–382 (1996).

    Article  CAS  Google Scholar 

  12. Favre R., Kohler, M., Gasser, B., Muller, F. & Nisand, I. Early fetal megacystis between 11 and 15 weeks of gestation. Ultrasound Obstet. Gynecol. 14, 402–406 (1999).

    Article  CAS  Google Scholar 

  13. Weber, S. et al. Muscarinic acetylcholine receptor M3 mutation causes urinary bladder disease and a prune-belly-like syndrome. Am. J. Hum. Genet. 89, 668–674 (2011).

    Article  CAS  Google Scholar 

  14. Morris, R. K., Malin G. L., Khan, K. S. & Kilby, M. D. Antenatal ultrasound to predict postnatal renal function in congenital lower urinary tract obstruction: systematic review of test accuracy. BJOG 116, 1290–1299 (2009).

    Article  CAS  Google Scholar 

  15. Thomas, D. F. Prenatally diagnosed urinary tract abnormalities: long-term outcome. Semin. Fetal Neonatal Med. 13, 189–195 (2008).

    Article  CAS  Google Scholar 

  16. Bernardes, L. S., Salomon, R., Aksnes, G., Lortat-Jacob, S. & Benachi, A. Ultrasound evaluation of prognosis in fetuses with posterior urethral valves. J. Pediatr. Surg. 46, 1412–1418 (2011).

    Article  Google Scholar 

  17. Johnson, M. P. et al. In utero surgical treatment of fetal obstructive uropathy: a new comprehensive approach to identify appropriate candidates for vesicoamniotic shunt therapy. Am. J. Obstet. Gynecol. 170, 1770–1776 (1994).

    Article  CAS  Google Scholar 

  18. Johnson, M. P. et al. Sequential urinalysis improves evaluation of fetal renal function in obstructive uropathy. Am. J. Obstet. Gynecol. 173, 59–65 (1995).

    Article  CAS  Google Scholar 

  19. Muller, F. et al. Fetal urinary biochemistry predicts postnatal renal function in children with bilateral obstructive uropathies. Obstet. Gynecol. 82, 813–820 (1993).

    CAS  PubMed  Google Scholar 

  20. Dommergues, M. et al. Fetal serum β2-microglobulin predicts postnatal renal function in bilateral uropathies. Kidney Int. 58, 312–316 (2000).

    Article  CAS  Google Scholar 

  21. Morris R. K., Quinlan-Jones, E., Kilby, M. D. & Khan, K. S. Systematic review of accuracy of fetal urine analysis to predict poor postnatal renal function in cases of congenital urinary tract obstruction. Prenat. Diagn. 27, 900–911 (2007).

    Article  CAS  Google Scholar 

  22. Klein, J. et al. Fetal urinary peptides to predict postnatal outcome of renal disease in fetuses with posterior urethral valves (PUV). Sci. Transl. Med. 5, 198ra106 (2013).

    Article  Google Scholar 

  23. Harrison, M. R. & Filly, R. A. in The Unborn Patient: Prenatal diagnosis and treatment 2nd edn (eds Harrison, M. R., Goldbus, M. & Filly, R. A.) 328–402 (Saunders, 1990).

    Google Scholar 

  24. Harrison, M. R., Nakayama, D. K., Noall, R. & de Lorimier, A. A. Correction of congenital hydronephrosis in utero II. Decompression reverses the effects of obstruction of the fetal lung and urinary tract. J. Pediatr. Surg. 17, 965–974 (1982).

    Article  CAS  Google Scholar 

  25. Glick, P. L., Harrison, M. R., Noall, R. A. & Villa, R. L. Correction of congenital hydronephrosis in utero III. Early mid-trimester ureteral obstruction produces renal dysplasia. J. Pediatr. Surg. 18, 681–687 (1983).

    Article  CAS  Google Scholar 

  26. Harrison, M. R., Ross, N., Noall, R. & de Lorimier, A. A. Correction of congenital hydronephrosis in utero I. The model: fetal urethral obstruction produces hydronephrosis and pulmonary hypoplasia in fetal lambs. J. Pediatr. Surg. 18, 247–256 (1983).

    Article  CAS  Google Scholar 

  27. Crombleholme, T. M. et al. Early experience with open fetal surgery for congenital hydronephrosis. J. Pediatr. Surg. 23, 1114–1121 (1988).

    Article  CAS  Google Scholar 

  28. Clifton, M. S., Harrison, M. R., Ball, R. & Lee, H. Fetoscopic transuterine release of posterior urethral valves: a new technique. Fetal Diagn. Ther. 23, 89–94 (2008).

    Article  Google Scholar 

  29. Manning, F. A., Harrison, M. R. & Rodeck, C. Catheter shunts for fetal hydronephrosis and hydrocephalus. Report of the International Fetal Surgery Registry. N. Engl. J. Med. 315, 336–340 (1986).

    Article  CAS  Google Scholar 

  30. Morris, R. K., Malin G. L., Khan, K. S. & Kilby, M. D. Systematic review of the effectiveness of antenatal intervention for the treatment of congenital lower urinary tract obstruction. BJOG 117, 382–390 (2010).

    Article  CAS  Google Scholar 

  31. Clark, T. J. et al. Prenatal bladder drainage in the management of fetal lower urinary tract obstruction: a systematic review and meta-analysis. Obstet. Gynecol. 102, 367–382 (2003).

    PubMed  Google Scholar 

  32. Clayton, D. B. & Brock, J. W. 3rd. In utero intervention for urologic diseases. Nat. Rev. Urol. 9, 207–217 (2012).

    Article  CAS  Google Scholar 

  33. Quintero, R. A. et al. In-utero percutaneous cystoscopy in the management of fetal lower obstructive uropathy. Lancet 346, 537–540 (1995).

    Article  CAS  Google Scholar 

  34. Ruano, R. et al. Fetal cystoscopy for severe lower urinary tract obstruction—initial experience of a single center. Prenat. Diagn. 30, 30–39 (2010).

    PubMed  Google Scholar 

  35. Quintero, R. A. et al. Percutaneous fetal cystoscopy and endoscopic fulguration of posterior urethral valves. Am. J. Obstet. Gynecol. 172, 206–209 (1995).

    Article  CAS  Google Scholar 

  36. Welsh, A., Agarwal, S., Kumar, S., Smith, R. P. & Fisk, N. M. Fetal cystoscopy in the management of fetal obstructive uropathy: experience in a single European centre. Prenat. Diagn. 23, 1033–1041 (2003).

    Article  Google Scholar 

  37. Morris, R. K., Ruano, R. & Kilby, M. D. Effectiveness of fetal cystoscopy as a diagnostic and therapeutic intervention for lower urinary tract obstruction: a systematic review. Ultrasound Obstet. Gynecol. 37, 629–637 (2011).

    Article  CAS  Google Scholar 

  38. Morris, R. K. et al. Percutaneous vesicoamniotic shunting versus conservative management for lower urinary tract obstruction (PLUTO): a randomised trial. Lancet 382, 1496–1506 (2013).

    Article  Google Scholar 

  39. Brown, C. et al. Effectiveness of percutaneous vesico-amniotic shunting in congenital lower urinary tract obstruction: divergence in prior beliefs among specialist groups. Eur. J. Obstet. Gynecol. Reprod. Biol. 152, 25–29 (2010).

    Article  Google Scholar 

  40. Pritchard, K. I. et al. Clinical uses of Bayesian probability. Lancet 325, 993–994 (1985).

    Article  Google Scholar 

  41. Lunn, D. J., Thomas, A., Best, N. & Spiegelhalter, D. WinBUGS—A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics Computing 10, 325–337 (2000).

    Article  Google Scholar 

  42. Biard, J. M. et al. Long-term outcomes in children treated by prenatal vesicoamniotic shunting for lower urinary tract obstruction. Obstet. Gynecol. 106, 503–508 (2005).

    Article  Google Scholar 

  43. Denny, E., Quinlan-Jones, E., Bibila, S. & Kilby, M. D. The experience of pregnant women with a diagnosis of fetal lower urinary tract obstruction (LUTO). Midwifery http://dx.doi.org/10.1016/j.midw.2013.10.023.

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.D.K. and R.K.M. contributed equally to researching data for the article, discussing content, writing the article and reviewing and editing the manuscript before submission.

Corresponding author

Correspondence to Mark D. Kilby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilby, M., Morris, R. Fetal therapy for the treatment of congenital bladder neck obstruction. Nat Rev Urol 11, 412–419 (2014). https://doi.org/10.1038/nrurol.2014.132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2014.132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing