Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Ex vivo culture of human prostate tissue and drug development

Abstract

Although an array of new therapeutics exist for prostate cancer, the development of agents that can improve outcomes for men with prostate cancer remains inefficient, costly, and frustratingly slow. A major impediment to the clinical translation of research findings is the lack of preclinical models that can accurately predict the clinical efficacy of new drugs and, therefore, enable the selection of agents that are most suitable for clinical trials. An approach that is gaining popularity in the prostate cancer community is ex vivo culture of primary human tissues, which retains the native tissue architecture, hormone responsiveness, and cell-to-cell signalling of the tumour microenvironment in a dynamic and manipulable state. Ex vivo culture systems recapitulate the structural complexity and heterogeneity of human prostate cancers in a laboratory setting, making them an important adjunct to current cell-line-based and animal-based models. When incorporated into preclinical studies, ex vivo cultured tissues enable robust quantitative evaluation of clinically relevant end points representing drug efficacy, investigation of therapy resistance, and biomarker discovery. By providing new clinically relevant insights into prostate carcinogenesis, it is likely that ex vivo culture will enhance drug development programmes and improve the translational 'hit rate' for prostate cancer research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Explant tissue culture methodologies.

Similar content being viewed by others

References

  1. Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nat. Rev. Drug Discov. 6, 115–120 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Huggins, C., Stephens, R. C. & Hodges, C. V. Studies on prostatic cancer: the effects of castration on advanced carcinoma of the prostate gland. Arch. Surg. 43, 209 (1941).

    CAS  Google Scholar 

  3. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Scher, H. I. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N. Engl. J. Med. 367, 1187–1197 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Adams, D. J. The Valley of Death in anticancer drug development: a reassessment. Trends Pharmacol. Sci. 33, 173–180 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Swartz, M. A. et al. Tumour microenvironment complexity: emerging roles in cancer therapy. Cancer Res. 72, 2473–2480 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ricke, E. A. et al. Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis 33, 1391–1398 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Matrisian, L. M., Cunha, G. R. & Mohla, S. Epithelial–stromal interactions and tumour progression: meeting summary and future directions. Cancer Res. 61, 844–846 (2001).

    Google Scholar 

  11. Johnson, J. I. et al. Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br. J. Cancer 84, 1424–1431 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Voskoglou-Nomikos, T., Pater, J. L. & Seymour, L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin. Cancer Res. 9, 227–239 (2003).

    Google Scholar 

  13. Toivanen, R., Taylor, R. A., Pook, D. W., Ellem, S. J. & Risbridger, G. P. Breaking through a roadblock in prostate cancer research: an update on human model systems. J. Steroid Biochem. Mol. Biol. 131, 122–131 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. DeRose, Y. S. et al. Tumour grafts derived from women with breast cancer authentically reflect tumour pathology, growth, metastasis and disease outcomes. Nat. Med. 17, 1514–1520 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lopez-Barcons, L. A. Human prostate cancer heterotransplants: a review on this experimental model. Asian J. Androl. 12, 509–518 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  16. Breslin, S. & O'Driscoll, L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov. Today 18, 240–249 (2012).

    Article  PubMed  Google Scholar 

  17. Gerlinger, M. et al. Intratumour heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pretlow, T. G., Yang, B. & Pretlow, T. P. Organ culture of benign, aging, and hyperplastic human prostate. Microsc. Res. Tech. 30, 271–281 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Varani, J., Dame, M. K., Wojno, K., Schuger, L. & Johnson, K. J. Characteristics of nonmalignant and malignant human prostate in organ culture. Lab. Invest. 79, 723–731 (1999).

    CAS  PubMed  Google Scholar 

  20. Ni, X. et al. Prostate-targeted radiosensitization via aptamer-shRNA chimeras in human tumour xenografts. J. Clin. Invest. 121, 2383–2390 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. McRae, C. U., Ghanadian, R., Fotherby, K. & Chisholm, G. D. The effect of testosterone on the human prostate in organ culture. Br. J. Urol. 45, 156–162 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Parrish, A. R. et al. Culturing precision-cut human prostate slices as an in vitro model of prostate pathobiology. Cell Biol. Toxicol. 18, 205–219 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kiviharju-af Hallstrom, T. M. et al. Human prostate epithelium lacks Wee1A-mediated DNA damage-induced checkpoint enforcement. Proc. Natl Acad. Sci. USA 104, 7211–7216 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Centenera, M. M. et al. Evidence for efficacy of new Hsp90 inhibitors revealed by ex vivo culture of human prostate tumours. Clin. Cancer Res. 18, 3562–3570 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Schiewer, M. J. et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2, 1134–1149 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Bray, K. et al. Bcl-2 modulation to activate apoptosis in prostate cancer. Mol. Cancer Res. 7, 1487–1496 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Geller, J. et al. Genistein inhibits the growth of human-patient BPH and prostate cancer in histoculture. Prostate 34, 75–79 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Papini, S. et al. Establishment of an organotypic in vitro culture system and its relevance to the characterization of human prostate epithelial cancer cells and their stromal interactions. Pathol. Res. Pract. 203, 209–216 (2007).

    Article  PubMed  Google Scholar 

  29. Nevalainen, M. T. et al. Hormone regulation of human prostate in organ culture. Cancer Res. 53, 199–207 (1993).

    Google Scholar 

  30. Geller, J., Sionit, L. R., Connors, K. & Hoffman, R. M. Measurement of androgen sensitivity in the human prostate in in vitro three-dimensional histoculture. Prostate 21, 269–278 (1992).

    Article  CAS  PubMed  Google Scholar 

  31. Jaamaa, S. et al. DNA damage recognition via activated ATM and p53 pathway in nonproliferating human prostate tissue. Cancer Res. 70, 630–641 (2010).

    Article  Google Scholar 

  32. Castells, M., Thibault, B., Delord, J. P. & Couderc, B. Implication of tumour microenvironment in chemoresistance: tumour-associated stromal cells protect tumour cells from cell death. Int. J. Mol. Sci. 13, 545–571 (2012).

    Article  Google Scholar 

  33. Hallden, G. Adenoviral gene expression and replication in human tumour explant models. Methods Mol. Biol. 797, 65–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Scher, H. I. et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: recommendations of the Prostate Cancer Clinical Trials Working Group. J. Clin. Oncol. 26, 1148–1159 (2008).

    Article  PubMed  Google Scholar 

  35. Collette, L. et al. Is prostate-specific antigen a valid surrogate end point for survival in hormonally treated patients with metastatic prostate cancer? Joint research of the European Organization for Research and Treatment of Cancer, the Limburgs Universitair Centrum, and AstraZeneca Pharmaceuticals. J. Clin. Oncol. 23, 139–148 (2005).

    Article  Google Scholar 

  36. Tan, D. S. et al. Biomarker-driven early clinical trials in oncology: a paradigm shift in drug development. Cancer J. 15, 406–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Khleif, S. N., Doroshow, J. H. & Hait, W. N. AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin. Cancer Res. 16, 299–318 (2010).

    Article  Google Scholar 

  38. Stonington, O. G. & Haemmingsen, H. Culture of cells as a monolayer derived from the epithelium of the human prostate: a new cell growth technique. J. Urol. 106, 393–400 (1971).

    Article  CAS  PubMed  Google Scholar 

  39. Kreisberg, J. I., Brattain, M. G. & Pretlow, T. G. Studies on human hyperplastic prostates maintained in organ culture. Invest. Urol. 15, 252–255 (1977).

    CAS  PubMed  Google Scholar 

  40. Sanefuji, H., Heatfield, B. M., Trump, B. F. & Young, J. D. Jr. Studies on carcinogenesis of human prostate. II. Long-term explant culture of normal prostate and benign prostatic hyperplasia: light microscopy. J. Natl Cancer Inst. 69, 751–756 (1982).

    CAS  PubMed  Google Scholar 

  41. Jones, E. G. & Harper, M. E. Studies on the proliferation, secretory activities, and epidermal growth factor receptor expression in benign prostatic hyperplasia explant cultures. Prostate 20, 133–149 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Nakhla, A. M., Khan, M. S., Romas, N. P. & Rosner, W. Oestradiol causes the rapid accumulation of cAMP in human prostate. Proc. Natl Acad. Sci. USA 91, 402–405 (1994).

    Article  Google Scholar 

  43. Olbina, G., Miljkovic, D., Hoffman, R. M. & Geller, J. New sensitive discovery histoculture model for growth-inhibition studies in prostate cancer and BPH. Prostate 37, 126–129 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Geller, J. et al. Comparison of androgen-independent growth and androgen-dependent growth in BPH and cancer tissue from the same radical prostatectomies in sponge-gel matrix histoculture. Prostate 31, 250–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Schrodt, G. R. & Foreman, C. D. In vitro maintenance of human hyperplastic prostate tissue. Invest. Urol. 9, 85–94 (1971).

    CAS  PubMed  Google Scholar 

  46. McMahon, M. J., Butler, A. V. & Thomas, G. H. Morphological responses of prostatic carcinoma to testosterone in organ culture. Br. J. Cancer 26, 388–394 (1972).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. McMahon, M. J. & Thomas, G. H. Morphological changes of benign prostatic hyperplasia in culture. Br. J. Cancer 27, 323–335 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Mistry, D., Weaver, J. P. & Riches, A. Organ culture studies of human prostatic adenocarcinomas. Prostate 4, 307–314 (1983).

    Article  CAS  PubMed  Google Scholar 

  49. Eigeliene, N., Harkonen, P. & Erkkola, R. Effects of oestradiol and medroxyprogesterone acetate in morphology, proliferation and apoptosis of human breast tissue in organ cultures. BMC Cancer 6, 246–259 (2006).

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Health and Medical Research Council of Australia (627185 and 1008349), Cancer Australia (627229), the Prostate Cancer Foundation of Australia (NDDA2711), the Royal Adelaide Hospital Research Committee, the Dorothy and James Cleo Thompson Foundation, National Institute of Health (R01 CA116777-05, R01 CA099996-09, and R01 ES016675-11). The Adelaide Prostate Cancer Centre is supported by an establishment grant from the Prostate Cancer Foundation of Australia (2011/0452). M. M. Centenera holds a Young Investigator Award from the Prostate Cancer Foundation of Australia (YI0412).

Author information

Authors and Affiliations

Authors

Contributions

M. M. Centenera and L. M. Butler researched, wrote, discussed, and edited the article. G. V. Raj, K. E. Knudsen, and W. D. Tilley contributed towards discussions of contents, edited, and reviewed the manuscript before submission.

Corresponding author

Correspondence to Lisa M. Butler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Centenera, M., Raj, G., Knudsen, K. et al. Ex vivo culture of human prostate tissue and drug development. Nat Rev Urol 10, 483–487 (2013). https://doi.org/10.1038/nrurol.2013.126

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2013.126

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer