Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Advanced prostate cancer—a case for adjuvant differentiation therapy

Abstract

The development of novel therapies such as abiraterone acetate and sipuleucel-T has improved the outlook for patients with advanced-stage and castration-resistant prostate cancer. However, the beneficial effects of these drugs are only measured in months. Moreover, the National Institute for Health and Clinical Excellence in the UK had ruled that the use of abiraterone acetate was not cost-effective before cost revision by the manufacturers. The FDA statement asserting that the use of 5α-reductase inhibitors for prostate cancer chemoprevention could increase the risk of developing high-grade prostate cancer also indirectly questions the value of direct androgen response manipulation for long-term benefit. These reports illustrate the need for a fresh and comprehensive analysis of advanced prostate cancer pathology to promote the next generation of effective adjuvant therapies. One such avenue is that of differentiation therapy, which seeks to promote the differentiation of cancer stem cells into a phenotype more sensitive to anticancer therapy than their parents. Using differentiation therapy with current antiandrogen therapies should augment our armoury of treatment for the management of advanced prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial hierarchy within prostate cancer.
Figure 2: Current approach for identifying targets and the need to consider cellular heterogeneity in the normal and cancerous prostate.
Figure 3: Combination of current therapies and differentiation therapy for the management of advanced-stage prostate cancer.

Similar content being viewed by others

References

  1. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2012. CA Cancer J. Clin. 62, 10–29 (2012).

    Article  PubMed  Google Scholar 

  2. Carducci, M. A. et al. A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110, 1959–1966 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sternberg, C. N. et al. Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J. Clin. Oncol. 27, 5431–5438 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Petrylak, D. P. et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 351, 1513–1520 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ning, Y. M. et al. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 2070–2076 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nilsson, S. et al. Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol. 8, 587–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yap, T. A., Zivi, A., Omlin, A. & de Bono, J. S. The changing therapeutic landscape of castration-resistant prostate cancer. Nat. Rev. Clin. Oncol. 8, 597–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Beltran, H. et al. New therapies for castration-resistant prostate cancer: efficacy and safety. Eur. Urol. 60, 279–290 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. National Institute for Health and Clinical Excellence. NICE consults on a new treatment for prostate cancer of article [online], (2012).

  16. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Andriole, G. L. et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 362, 1192–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. FDA. FDA drug safety communication: 5α reductase inhibitors (5-ARIs) may increase the risk of a more serious form of prostate cancer [online], (2011).

  19. Horning, S. J. Natural history of and therapy for the indolent non-Hodgkin's lymphomas. Semin. Oncol. 20, 75–88 (1993).

    CAS  PubMed  Google Scholar 

  20. Child, J. A. et al. High-dose chemotherapy with hematopoietic stem-cell rescue for multiple myeloma. N. Engl. J. Med. 348, 1875–1883 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Rocha Lima, C. M. et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J. Clin. Oncol. 22, 3776–3783 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ben-Porath, I. et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat. Genet. 40, 499–507 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stevenson, M. et al. Characterizing the clinical relevance of an embryonic stem cell phenotype in lung adenocarcinoma. Clin. Cancer Res. 15, 7553–7561 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Schoenhals, M. et al. Embryonic stem cell markers expression in cancers. Biochem. Biophys. Res. Commun. 383, 157–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl Acad. Sci. USA 100, 3983–3988 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J. & Maitland, N. J. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65, 10946–10951 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Goldstein, A. S., Stoyanova, T. & Witte, O. Primitive origins of prostate cancer: in vivo evidence for prostate-regenerating cells and prostate cancer-initiating cells. Mol. Oncol. 4, 385–481 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Singh, S. K. et al. Identification of a cancer stem cell in human brain tumors. Neurosurgery 53, 487–488 (2003).

    Article  Google Scholar 

  29. O'Brien, C. A., Pollett, A., Gallinger, S. & Dick, J. E. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445, 106–110 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R. & Tang, D. G. Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+α2β1+ cell population is enriched in tumor-initiating cells. Cancer Res. 67, 6796–6805 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alison, M. R., Lim, S. M. & Nicholson, L. J. Cancer stem cells: problems for therapy? J. Pathol. 223, 148–162 (2011).

    Article  CAS  Google Scholar 

  35. Zhou, B. B. et al. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov. 8, 806–823 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Maitland, N. J., Frame, F. M., Polson, E. S., Lewis, J. L. & Collins, A. T. Prostate cancer stem cells: do they have a basal or luminal phenotype? Horm. Cancer 2, 47–61 (2011).

    Article  PubMed  Google Scholar 

  37. Oldridge, E. E., Pellacani, D., Collins, A. T. & Maitland, N. J. Prostate cancer stem cells: are they androgen-responsive? Mol. Cell Endocrinol. 360, 14–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. van Leenders, G. J., Aalders, T. W., Hulsbergen-van de Kaa, C. A., Ruiter, D. J. & Schalken, J. A. Expression of basal cell keratins in human prostate cancer metastases and cell lines. J. Pathol. 195, 563–570 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Rizzo, S., Attard, G. & Hudson, D. L. Prostate epithelial stem cells. Cell Prolif. 38, 363–374 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gil-Diez de Medina, S. et al. Modulation of cytokeratin subtype, EGF receptor, and androgen receptor expression during progression of prostate cancer. Hum. Pathol. 29, 1005–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Hoey, T. et al. DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5, 168–177 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Gupta, P. B. et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645–659 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mueller, M. T. et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology 137, 1102–1113 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Ma, S., Lee, T. K., Zheng, B. J., Chan, K. W. & Guan, X. Y. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27, 1749–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Levina, V., Marrangoni, A. M., DeMarco, R., Gorelik, E. & Lokshin, A. E. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE 3, e3077 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dylla, S. J. et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3, e2428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pierce, G. B. & Speers, W. C. Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res. 48, 1996–2004 (1988).

    CAS  PubMed  Google Scholar 

  48. Wijaya, L., Agustina, D., Lizandi, A. O., Kartawinata, M. M. & Sandra, F. Reversing breast cancer stem cell into breast somatic stem cell. Curr. Pharm. Biotechnol. 12, 189–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Petrigliano, F. A. et al. Targeting of prostate cancer cells by a cytotoxic lentiviral vector containing a prostate stem cell antigen (PSCA) promoter. Prostate 69, 1422–1434 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. El-Alfy, M., Pelletier, G., Hermo, L. S. & Labrie, F. Unique features of the basal cells of human prostate epithelium. Microsc. Res. Tech. 51, 436–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Humphrey, P. A. Diagnosis of adenocarcinoma in prostate needle biopsy tissue. J. Clin. Pathol. 60, 35–42 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nagle, R. B. et al. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res. 47, 281–286 (1987).

    CAS  PubMed  Google Scholar 

  53. Kuramoto, K. et al. The impact of low-dose busulfan on clonal dynamics in nonhuman primates. Blood 104, 1273–1280 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Calcagno, A. M. et al. Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J. Natl Cancer Inst. 102, 1637–1652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Maitland, N. J. & Collins, A. T. Cancer stem cells—a therapeutic target? Curr. Opin. Mol. Ther. 12, 662–673 (2010).

    CAS  PubMed  Google Scholar 

  56. Sell, S. Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol. 51, 1–28 (2004).

    Article  PubMed  Google Scholar 

  57. Huang, M. E. et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 72, 567–572 (1988).

    CAS  PubMed  Google Scholar 

  58. Rowley, J. D., Golomb, H. M. & Dougherty, C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet 1, 549–550 (1977).

    Article  CAS  PubMed  Google Scholar 

  59. de Thé, H. et al. The PML-RAR α fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66, 675–684 (1991).

    Article  PubMed  Google Scholar 

  60. Grignani, F. et al. The acute promyelocytic leukemia-specific PML-RAR α fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Cell 74, 423–431 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Sanz, M. A. et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113, 1875–1891 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Nowak, D., Stewart, D. & Koeffler, H. P. Differentiation therapy of leukemia: 3 decades of development. Blood 113, 3655–3665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Debruyne, F. J. et al. Liarozole—a novel treatment approach for advanced prostate cancer: results of a large randomized trial versus cyproterone acetate. Liarozole Study Group. Urology 52, 72–81 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Denis, L., Debruyne, F., De Porre, P. & Bruynseels, J. Early clinical experience with liarozole (Liazal) in patients with progressive prostate cancer. Eur. J. Cancer 34, 469–475 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. Swami, S., Krishnan, A. V. & Feldman, D. Vitamin D metabolism and action in the prostate: implications for health and disease. Mol. Cell Endocrinol. 347, 61–69 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pasquali, D., Rossi, V., Bellastella, G., Bellastella, A. & Sinisi, A. A. Natural and synthetic retinoids in prostate cancer. Curr. Pharm. Des. 12, 1923–1929 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Kubota, T. et al. Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 58, 3344–3352 (1998).

    CAS  PubMed  Google Scholar 

  68. Samid, D., Shack, S. & Myers, C. E. Selective growth arrest and phenotypic reversion of prostate cancer cells in vitro by nontoxic pharmacological concentrations of phenylacetate. J. Clin. Invest. 91, 2288–2295 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Floryk, D. & Huberman, E. Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145. Cancer Lett. 231, 20–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Mueller, E. et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl Acad. Sci. USA 97, 10990–10995 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Leibowitz, S. B. & Kantoff, P. W. Differentiating agents and the treatment of prostate cancer: vitamin D3 and peroxisome proliferator-activated receptor gamma ligands. Semin. Oncol. 30, 698–708 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Shiau, C. W. et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARγ. Cancer Res. 65, 1561–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Akinyeke, T. O. & Stewart, L. V. Troglitazone suppresses c-Myc levels in human prostate cancer cells via a PPARgamma-independent mechanism. Cancer Biol. Ther. 11, 1046–1058 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crowe, D. L., Kim, R. & Chandraratna, R. A. Retinoic acid differentially regulates cancer cell proliferation via dose-dependent modulation of the mitogen-activated protein kinase pathway. Mol. Cancer Res. 1, 532–540 (2003).

    CAS  PubMed  Google Scholar 

  75. Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B. & Farrar, W. L. CD44+ CD24 prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br. J. Cancer 98, 756–765 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Esquenet, M., Swinnen, J. V., Heyns, W. & Verhoeven, G. Control of LNCaP proliferation and differentiation: actions and interactions of androgens, 1α,25-dihydroxycholecalciferol, all-trans retinoic acid, 9-cis retinoic acid, and phenylacetate. Prostate 28, 182–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Gleave, M. E. et al. Butyrate analogue, isobutyramide, inhibits tumor growth and time to androgen-independent progression in the human prostate LNCaP tumor model. J. Cell Biochem. 69, 271–281 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Hisatake, J. I. et al. Down-regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res. 60, 5494–5498 (2000).

    CAS  PubMed  Google Scholar 

  79. Hedlund, T. E., Moffatt, K. A., Uskokovic, M. R. & Miller, G. J. Three synthetic vitamin D analogues induce prostate-specific acid phosphatase and prostate-specific antigen while inhibiting the growth of human prostate cancer cells in a vitamin D receptor-dependent fashion. Clin. Cancer Res. 3, 1331–1338 (1997).

    CAS  PubMed  Google Scholar 

  80. Floryk, D. & Thompson, T. C. Perifosine induces differentiation and cell death in prostate cancer cells. Cancer Lett. 266, 216–226 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Woo, T. C., Choo, R., Jamieson, M., Chander, S. & Vieth, R. Pilot study: potential role of vitamin D (Cholecalciferol) in patients with PSA relapse after definitive therapy. Nutr. Cancer 51, 32–36 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Ottinger, S. et al. Targeting of pancreatic and prostate cancer stem cell characteristics by Crambe crambe marine sponge extract. Int. J. Cancer 130, 1671–1681 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Hellsten, R., Johansson, M., Dahlman, A., Sterner, O. & Bjartell, A. Galiellalactone inhibits stem cell-like ALDH-positive prostate cancer cells. PLoS ONE 6, e22118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kallifatidis, G. et al. Sulforaphane increases drug-mediated cytotoxicity toward cancer stem-like cells of pancreas and prostate. Mol. Ther. 19, 188–195 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Marian, C. O., Wright, W. E. & Shay, J. W. The effects of telomerase inhibition on prostate tumor-initiating cells. Int. J. Cancer 127, 321–331 (2010).

    CAS  PubMed  Google Scholar 

  86. Dubrovska, A. et al. The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc. Natl Acad. Sci. USA 106, 268–273 (2009).

    Article  PubMed  Google Scholar 

  87. Charrad, R. S. et al. Ligation of the CD44 adhesion molecule reverses blockage of differentiation in human acute myeloid leukemia. Nat. Med. 5, 669–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Dubrovska, A. et al. Combination therapy targeting both tumor-initiating and differentiated cell populations in prostate carcinoma. Clin. Cancer Res. 16, 5692–5702 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Liu, C. et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med. 17, 211–215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Luk, S. U. et al. γ-tocotrienol as an effective agent in targeting prostate cancer stem cell-like population. Int. J. Cancer 128, 2182–2191 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Klein, E. A. et al. Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306, 1549–1556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gysin, R., Azzi, A. & Visarius, T. γ-Tocopherol inhibits human cancer cell cycle progression and cell proliferation by down-regulation of cyclins. FASEB J. 16, 1952–1954 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Venkateswaran, V., Fleshner, N. E. & Klotz, L. H. Modulation of cell proliferation and cell cycle regulators by vitamin E in human prostate carcinoma cell lines. J. Urol. 168, 1578–1582 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Packer, J. E., Slater, T. F. & Willson, R. L. Direct observation of a free radical interaction between vitamin E and vitamin C. Nature 278, 737–738 (1979).

    Article  CAS  PubMed  Google Scholar 

  95. Mimeault, M. & Batra, S. K. Animal models relevant to human prostate carcinogenesis underlining the critical implication of prostatic stem/progenitor cells. Biochim. Biophys. Acta 1816, 25–37 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Richardson, G. D. et al. CD133, a novel marker for human prostatic epithelial stem cells. J. Cell Sci. 117, 3539–3545 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Lawson, D. A. et al. Basal epithelial stem cells are efficient targets for prostate cancer initiation. Proc. Natl Acad. Sci. USA 107, 2610–2615 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Birnie, R. et al. Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biol. 9, R83 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shepherd, C. J. et al. Expression profiling of CD133+ and CD133 epithelial cells from human prostate. Prostate 68, 1007–1024 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Maund, S. L. et al. Interleukin-1α mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells. Cancer Res. 71, 5276–5286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Richards, J. et al. Interactions of abiraterone, eplerenone and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Res. 72, 2176–2182 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stein, M. N., Goodin, S. & Dipaola, R. S. Abiraterone in prostate cancer: a new angle to an old problem. Clin. Cancer Res. 18, 1848–1854 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Parker, C. et al. Overall survival benefit of radium-223 chloride (AlpharadinTM) in the treatment of patients with symptomatic bone metastases in castration-resistant prostate cancer (CRPC): a phase III randomized trial (ALSYMPCA) [abstract]. Eur. J. Cancer 47 (Suppl. 2), 3 (2011).

    Article  Google Scholar 

  104. de Bono, J. S. et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147–1154 (2010).

    Article  CAS  PubMed  Google Scholar 

  105. Scher, H. I. et al. Effect of MDV3100, an androgen receptor signaling inhibitor (ARSI), on overall survival in patients with prostate cancer postdocetaxel: results from the phase III AFFIRM study [abstract]. J. Clin. Oncol. 30 (Suppl. 5), LBA1 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Fiona Frame and Dr Euan Polson for their critical reading of the manuscript before submission. We would also like to acknowledge our funding from the EU Marie Curie Network: Prostate Research Organizations–Network of Early Stage Training (J. K. Rane), The Freemasons' Grand Charity (D. Pellacani) and Yorkshire Cancer Research (Project grant Y256 and Program grant) (D. Pellacani, N. J. Maitland).

Author information

Authors and Affiliations

Authors

Contributions

J. K. Rane and D. Pellacani researched the data for and wrote the article. All authors contributed substantially to the discussion of the article content and edited the manuscript before submission.

Corresponding author

Correspondence to Norman J. Maitland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rane, J., Pellacani, D. & Maitland, N. Advanced prostate cancer—a case for adjuvant differentiation therapy. Nat Rev Urol 9, 595–602 (2012). https://doi.org/10.1038/nrurol.2012.157

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.157

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing