Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sex for fun: a synthesis of human and animal neurobiology

Abstract

Sex is a fundamental pleasure, and crucial to the survival of our species. Though not many people would disagree with the proposition that sexual behaviour depends on the brain, the neuroscientific study of human sex is still relatively taboo and much remains to be discovered. On the contrary, excellent experimental animal models (mostly rat) are available that have uncovered major behavioural, neurochemical, and neuroanatomical characteristics of sexual behaviour. Restructuring sexual behaviour into broader terms reflecting behavioural states (wanting, liking, and inhibition) facilitates species comparison, revealing many similarities between animal and human sexual pleasure cycles, some of which can serve as potential avenues of new human sex research. In particular, behavioural and brain evidence clearly shows that motivational and consummatory phases are fundamentally distinct, and that genitally-induced sexual reward is a major factor in sexual learning mechanisms.

Key Points

  • Restructuring sexual behaviour into broader terms reflecting behavioural states (wanting, liking, and inhibition) facilitates species comparison; similarities between animal and human sexual pleasure cycles can serve as potential avenues of new human sex research

  • Sexual wanting in both rats and humans involves interaction between gonadal hormones and external stimuli that become sexual incentives through association with genitally-induced sexual reward; pleasurable genital stimulation is thus a major factor in sexual learning

  • In terms of underlying brain networks and neurochemistry identified in both rat and human, wanting sex is something completely different to liking sex

  • Sexual inhibition involves similar brain mechanisms in rats and humans

  • Rats show a similar pattern of brain activation to humans in response to cues related to sexual reward

  • Cortical, limbic, hypothalamic, and cerebellar regions are activated by sex-related stimuli in both humans and rats

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sexual pleasure cycle.
Figure 2: Partnered stimulation protocols (PSPs) to study the central mechanisms of human sexual consummation.
Figure 3: Scheme representing the most important neurobiological and behavioural elements of sexual responsiveness, as well as the interaction between them.
Figure 4: Neural systems critical for the display of unconditioned and conditioned sexual behaviour in the rat.

Similar content being viewed by others

References

  1. Bancroft, J., Loftus, J. & Long, J. S. Distress about sex: a national survey of women in heterosexual relationships. Arch. Sex. Behav. 32, 193–208 (2003).

    Article  PubMed  Google Scholar 

  2. Waldinger, M. D. & Schweitzer, D. H. Changing paradigms from a historical DSM-III and DSM-IV view toward an evidence-based definition of premature ejaculation. Part II--proposals for DSM-V and ICD-11. J. Sex. Med. 3, 693–705 (2006).

    Article  PubMed  Google Scholar 

  3. Mark, K. P. & Murray, S. H. Gender differences in desire discrepancy as a predictor of sexual and relationship satisfaction in a college sample of heterosexual romantic relationships. J. Sex. Marital Ther. 38, 198–215 (2012).

    Article  PubMed  Google Scholar 

  4. Mark, K. P., Janssen, E. & Milhausen, R. R. Infidelity in heterosexual couples: demographic, interpersonal, and personality-related predictors of extradyadic sex. Arch. Sex. Behav. 40, 971–982 (2011).

    Article  PubMed  Google Scholar 

  5. Montesi, J. L. et al. On the relationship among social anxiety, intimacy, sexual communication, and sexual satisfaction in young couples. Arch. Sex. Behav. doi: 10.1007/s10508-012-9929-3.

  6. Georgiadis, J. R. & Kringelbach, M. L. The human sexual response cycle: neuroimaging evidence linking sex to other pleasures. Prog. Neurobiol. 98, 49–81 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Pfaus, J. G. et al. Who, what, where, when (and maybe even why)? How the experience of sexual reward connects sexual desire, preference, and performance. Arch. Sex. Behav. 41, 31–62 (2012).

    Article  PubMed  Google Scholar 

  8. Pfaus, J. G. Pathways of sexual desire. J. Sex. Med. 6, 1506–1533 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Parada, M., Chamas, L., Censi, S., Coria-Avila, G. & Pfaus, J. G. Clitoral stimulation induces conditioned place preference and Fos activation in the rat. Horm. Behav. 57, 112–118 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Masters, W. H. & Johnson, V. E. Human Sexual Response (Little, Brown and Company, Boston, 1966).

    Google Scholar 

  11. Kringelbach, M. L. & Berridge, K. C. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 13, 479–487 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kringelbach, M. L. The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6, 691–702 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Giuliano, F. & Rampin, O. Central neural regulation of penile erection. Neurosci. Biobehav. Rev. 24, 517–533 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Truitt, W. A. & Coolen, L. M. Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566–1569 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Everaert, K. et al. Neuroanatomy and neurophysiology related to sexual dysfunction in male neurogenic patients with lesions to the spinal cord or peripheral nerves. Spinal Cord 48, 182–191 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Ågmo, A. Functional and Dysfunctional Sexual Behaviour: a Synthesis of Neuroscience and Comparative Psychology (Academic Press, London, 2007).

    Google Scholar 

  17. von Krafft-Ebing, R. Psychopathia Sexualis (Physicians and Surgeons Book Co., New York, 1929).

    Google Scholar 

  18. Pfaff, D. W. Drive: Neurobiological and molecular mechanisms of sexual motivation (MIT Press, Cambridge, 1999).

    Book  Google Scholar 

  19. Georgescu, M., Sabongui, C., Del Corpo, A., Marsan, L. & Pfaus, J. G. Vaginocervical stimulation induces Fos in glutamate neurons in the ventromedial hypothalamus: attenuation by estrogen and progesterone. Horm. Behav. 56, 450–456 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Whalen, R. E. Sexual motivation. Psychol. Rev. 73, 151–163 (1966).

    Article  CAS  PubMed  Google Scholar 

  21. Wallen, K. in Sexual nature sexual culture (eds Abramson, P. R. & Pinkerton, S. D.) 57–79 (University of Chicago Press, Chicago, 1995).

    Google Scholar 

  22. Jiang, Y., Costello, P., Fang, F., Huang, M. & He, S. A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc. Natl Acad. Sci. USA 103, 17048–17052 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Childress, A. R. et al. Prelude to passion: limbic activation by “unseen” drug and sexual cues. PLoS ONE 3, e1506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oei, N. Y., Rombouts, S. A., Soeter, R. P., van Gerven, J. M. & Both, S. Dopamine modulates reward system activity during subconscious processing of sexual stimuli. Neuropsychopharmacology 37, 1729–1737 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yacubian, J. et al. Gene-gene interaction associated with neural reward sensitivity. Proc. Natl Acad. Sci. USA 104, 8125–8130 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Guo, G., Tong, Y., Xie, C. W. & Lange, L. A. Dopamine transporter, gender, and number of sexual partners among young adults. Eur. J. Hum. Genet. 15, 279–287 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Guo, G. & Tong, Y. Y. Age at first sexual intercourse, genes, and social context: evidence from twins and the dopamine D4 receptor gene. Demography 43, 747–769 (2006).

    Article  PubMed  Google Scholar 

  28. Hagemann, J. H. et al. Effects of visual sexual stimuli and apomorphine SL on cerebral activity in men with erectile dysfunction. Eur. Urol. 43, 412–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Montorsi, F. et al. Apomorphine-induced brain modulation during sexual stimulation: a new look at central phenomena related to erectile dysfunction. Int. J. Impot. Res. 15, 203–209 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Archer, J. S., Love-Geffen, T. E., Herbst-Damm, K. L., Swinney, D. A. & Chang, J. R. Effect of estradiol versus estradiol and testosterone on brain-activation patterns in postmenopausal women. Menopause 13, 528–537 (2006).

    Article  PubMed  Google Scholar 

  31. Gizewski, E. R. et al. There are differences in cerebral activation between females in distinct menstrual phases during viewing of erotic stimuli: a fMRI study. Exp. Brain Res. 174, 101–108 (2006).

    Article  PubMed  Google Scholar 

  32. Redouté, J. et al. Brain processing of visual sexual stimuli in treated and untreated hypogonadal patients. Psychoneuroendocrinology 30, 461–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Ossewaarde, L. et al. Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase. Soc. Cogn. Affect. Neurosci. 6, 612–620 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hermans, E. J. et al. Effects of exogenous testosterone on the ventral striatal BOLD response during reward anticipation in healthy women. Neuroimage 52, 277–283 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Roozendaal, B., McEwen, B. S. & Chattarji, S. Stress, memory and the amygdala. Nat. Rev. Neurosci. 10, 423–433 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Hamann, S. B., Ely, T. D., Grafton, S. T. & Kilts, C. D. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat. Neurosci. 2, 289–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Both, S. et al. Unconscious classical conditioning of sexual arousal: evidence for the conditioning of female genital arousal to subliminally presented sexual stimuli. J. Sex. Med. 5, 100–109 (2008).

    Article  PubMed  Google Scholar 

  38. Both, S. et al. Appetitive and aversive classical conditioning of female sexual response. J. Sex. Med. 5, 1386–1401 (2008).

    Article  PubMed  Google Scholar 

  39. Both, S., Brauer, M. & Laan, E. Classical conditioning of sexual response in women: a replication study. J. Sex. Med. 8, 3116–3131 (2011).

    Article  PubMed  Google Scholar 

  40. Klucken, T. et al. Neural activations of the acquisition of conditioned sexual arousal: effects of contingency awareness and sex. J. Sex. Med. 6, 3071–3085 (2009).

    Article  PubMed  Google Scholar 

  41. Sescousse, G., Redoute, J. & Dreher, J. C. The architecture of reward value coding in the human orbitofrontal cortex. J. Neurosci. 30, 13095–13104 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Pfaus, J. G. & Gorzalka, B. B. Opioids and sexual behavior. Neurosci. Biobehav. Rev. 11, 1–34 (1987).

    Article  CAS  PubMed  Google Scholar 

  43. Chessick, R. D. The “pharmacogenic orgasm” in the drug addict. Arch. Gen. Psychiatry 3, 545–556 (1960).

    Article  CAS  PubMed  Google Scholar 

  44. Whipple, B. & Komisaruk, B. R. Elevation of pain threshold by vaginal stimulation in women. Pain 21, 357–367 (1985).

    Article  CAS  PubMed  Google Scholar 

  45. Szechtman, H., Hershkowitz, M. & Simantov, R. Sexual behavior decreases pain sensitivity and stimulated endogenous opioids in male rats. Eur. J. Pharmacol. 70, 279–285 (1981).

    Article  CAS  PubMed  Google Scholar 

  46. Komisaruk, B. R. & Whipple, B. Non-genital orgasms. Sex. Relat. Ther. 26, 356–372 (2011).

    Article  Google Scholar 

  47. Komisaruk, B. R., Beyer, C. & Whipple, B. The Science of Orgasm (JHU Press, Baltimore, 2006).

    Google Scholar 

  48. Carson, C. & Wyllie, M. Improved ejaculatory latency, control and sexual satisfaction when PSD502 is applied topically in men with premature ejaculation: results of a phase III, double-blind, placebo-controlled study. J. Sex. Med. 7, 3179–3189 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Kinsey, A. C., Pomeroy, W., Martin, C. & Gebhard, P. H. Sexual behavior in the human female (W. B. Saunders, Philadelphia, 1953).

    Google Scholar 

  50. Williams-Ashman, H. G. Enigmatic features of penile development and functions. Perspect. Biol. Med. 33, 335–374 (1990).

    Article  CAS  PubMed  Google Scholar 

  51. Marson, L. Central nervous system neurons identified after injection of pseudorabies virus into the rat clitoris. Neurosci. Lett. 190, 41–44 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Marson, L. & McKenna, K. E. CNS cell groups involved in the control of the ischiocavernosus and bulbospongiosus muscles: a transneuronal tracing study using pseudorabies virus. J. Comp. Neurol. 374, 161–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Moszkowicz, D. et al. Neural supply to the clitoris: immunohistochemical study with three-dimensional reconstruction of cavernous nerve, spongious nerve, and dorsal clitoris nerve in human fetus. J. Sex. Med. 8, 1112–1122 (2011).

    Article  PubMed  Google Scholar 

  54. Andrews, A. H., Blowey, R. W., Boyd, H. & Eddy, R. G. Bovine Medicine (Blackwell Scientific Publications, Oxford, 1992).

    Google Scholar 

  55. Rowland, D. L. Penile sensitivity in men: a composite of recent findings. Urology 52, 1101–1105 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, R. D. & Halata, Z. Topography and ultrastructure of sensory nerve endings in the glans penis of the rat. J. Comp. Neurol. 312, 299–310 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Halata, Z. & Munger, B. L. The neuroanatomical basis for the protopathic sensibility of the human glans penis. Brain Res. 371, 205–230 (1986).

    Article  CAS  PubMed  Google Scholar 

  58. Vallbo, A., Olausson, H., Wessberg, J. & Norrsell, U. A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res. 628, 301–304 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Bjornsdotter, M., Morrison, I. & Olausson, H. Feeling good: on the role of C fiber mediated touch in interoception. Exp. Brain Res. 207, 149–155 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Levin, R. & Meston, C. Nipple/breast stimulation and sexual arousal in young men and women. J. Sex. Med. 3, 450–454 (2006).

    Article  PubMed  Google Scholar 

  61. Hubscher, C. H., Reed, W. R., Kaddumi, E. G., Armstrong, J. E. & Johnson, R. D. Select spinal lesions reveal multiple ascending pathways in the rat conveying input from the male genitalia. J. Physiol. 588, 1073–1083 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beric, A. & Light, J. K. Anorgasmia in anterior spinal cord syndrome. J. Neurol. Neurosurg. Psychiatry 56, 548–551 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ismail, N., Gelez, H., Lachapelle, I. & Pfaus, J. G. Pacing conditions contribute to the conditioned ejaculatory preference for a familiar female in the male rat. Physiol. Behav. 96, 201–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Kippin, T. E. & Pfaus, J. G. The nature of the conditioned response mediating olfactory conditioned ejaculatory preference in the male rat. Behav. Brain Res. 122, 11–24 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Agmo, A. & Berenfeld, R. Reinforcing properties of ejaculation in the male rat: role of opioids and dopamine. Behav. Neurosci. 104, 177–182 (1990).

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Manzo, G. & Fernandez-Guasti, A. Opioid antagonists and the sexual satiation phenomenon. Psychopharmacology (Berl.) 122, 131–136 (1995).

    Article  CAS  Google Scholar 

  67. Coria-Avila, G. A., Ouimet, A. J., Pacheco, P., Manzo, J. & Pfaus, J. G. Olfactory conditioned partner preference in the female rat. Behav. Neurosci. 119, 716–725 (2005).

    Article  PubMed  Google Scholar 

  68. Coria-Avila, G. A. et al. Neurochemical basis of conditioned partner preference in the female rat: I. Disruption by naloxone. Behav. Neurosci. 122, 385–395 (2008).

    Article  PubMed  Google Scholar 

  69. Paredes, R. G. & Vazquez, B. What do female rats like about sex? Paced mating. Behav. Brain Res. 105, 117–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Paredes, R. G. & Martinez, I. Naloxone blocks place preference conditioning after paced mating in female rats. Behav. Neurosci. 115, 1363–1367 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Kippin, T. E., Sotiropoulos, V., Badih, J. & Pfaus, J. G. Opposing roles of the nucleus accumbens and anterior lateral hypothalamic area in the control of sexual behaviour in the male rat. Eur. J. Neurosci. 19, 698–704 (2004).

    Article  PubMed  Google Scholar 

  72. Cibrian-Llanderal, T. et al. Clitoral stimulation modulates appetitive sexual behavior and facilitates reproduction in rats. Physiol. Behav. 100, 148–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Meerts, S. H. & Clark, A. S. Artificial vaginocervical stimulation induces a conditioned place preference in female rats. Horm. Behav. 55, 128–132 (2009).

    Article  PubMed  Google Scholar 

  74. Parada, M., Abdul-Ahad, F., Censi, S., Sparks, L. & Pfaus, J. G. Context alters the ability of clitoral stimulation to induce a sexually-conditioned partner preference in the rat. Horm. Behav. 59, 520–527 (2011).

    Article  PubMed  Google Scholar 

  75. Ismail, N., Zhao, Y. & Pfaus, J. G. Context-dependent acquisition of copulatory behavior in the male rat: role of female availability. Behav. Neurosci. 122, 991–997 (2008).

    Article  PubMed  Google Scholar 

  76. Tenk, C. M., Wilson, H., Zhang, Q., Pitchers, K. K. & Coolen, L. M. Sexual reward in male rats: effects of sexual experience on conditioned place preferences associated with ejaculation and intromissions. Horm. Behav. 55, 93–97 (2009).

    Article  PubMed  Google Scholar 

  77. Pfaus, J. G. & Heeb, M. M. Implications of immediate-early gene induction in the brain following sexual stimulation of female and male rodents. Brain Res. Bull. 44, 397–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Georgiadis, J. R. et al. Dynamic subcortical blood flow during male sexual activity with ecological validity: a perfusion fMRI study. Neuroimage 50, 208–216 (2010).

    Article  PubMed  Google Scholar 

  79. Redouté, J. et al. Brain processing of visual sexual stimuli in human males. Hum. Brain Mapp. 11, 162–177 (2000).

    Article  PubMed  Google Scholar 

  80. Arnow, B. A. et al. Women with hypoactive sexual desire disorder compared to normal females: a functional magnetic resonance imaging study. Neuroscience 158, 484–502 (2009).

    Article  CAS  PubMed  Google Scholar 

  81. Robinson, T. E. & Berridge, K. C. The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18, 247–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  82. Blackburn, J. R., Pfaus, J. G. & Phillips, A. G. Dopamine functions in appetitive and defensive behaviours. Prog. Neurobiol. 39, 247–279 (1992).

    Article  CAS  PubMed  Google Scholar 

  83. Matsumoto, J. et al. Neuronal responses in the nucleus accumbens shell during sexual behavior in male rats. J. Neurosci. 32, 1672–1686 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Georgiadis, J. R. Exposing orgasm in the brain: a critical eye. Sex. Rel. Ther. 26, 342–355 (2011).

    Article  Google Scholar 

  85. Whipple, B. & Komisaruk, B. R. Brain (PET) responses to vaginal-cervical self-stimulation in women with complete spinal cord injury: preliminary findings. J. Sex Marital Ther. 28, 79–86 (2002).

    Article  PubMed  Google Scholar 

  86. Liu, W. C. et al. fMRI study of acupuncture-induced periaqueductal gray activity in humans. Neuroreport 15, 1937–1940 (2004).

    Article  PubMed  Google Scholar 

  87. Komisaruk, B. R. et al. Women's clitoris, vagina, and cervix mapped on the sensory cortex: fMRI evidence. J. Sex. Med. 8, 2822–2830 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Georgiadis, J. R. et al. Regional cerebral blood flow changes associated with clitorally induced orgasm in healthy women. Eur. J. Neurosci. 24, 3305–3316 (2006).

    Article  PubMed  Google Scholar 

  89. Georgiadis, J. R., Reinders, A. A., Paans, A. M., Renken, R. & Kortekaas, R. Men versus women on sexual brain function: prominent differences during tactile genital stimulation, but not during orgasm. Hum. Brain Mapp. 30, 3089–3101 (2009).

    Article  PubMed  Google Scholar 

  90. Kell, C. A., von Kriegstein, K., Rosler, A., Kleinschmidt, A. & Laufs, H. The sensory cortical representation of the human penis: revisiting somatotopy in the male homunculus. J. Neurosci. 25, 5984–5987 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Michels, L., Mehnert, U., Boy, S., Schurch, B. & Kollias, S. The somatosensory representation of the human clitoris: an fMRI study. Neuroimage 49, 177–184 (2010).

    Article  PubMed  Google Scholar 

  92. Mehnert, U. et al. Brain activation in response to bladder filling and simultaneous stimulation of the dorsal clitoral nerve—an fMRI study in healthy women. Neuroimage 41, 682–689 (2008).

    Article  PubMed  Google Scholar 

  93. Georgiadis, J. R. & Holstege, G. Human brain activation during sexual stimulation of the penis. J. Comp. Neurol. 493, 33–38 (2005).

    Article  PubMed  Google Scholar 

  94. Mäkelä, J. P. et al. Dorsal penile nerve stimulation elicits left-hemisphere dominant activation in the second somatosensory cortex. Hum. Brain Mapp. 18, 90–99 (2003).

    Article  PubMed  Google Scholar 

  95. Mouras, H. et al. Activation of mirror-neuron system by erotic video clips predicts degree of induced erection: an fMRI study. Neuroimage 42, 1142–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Moulier, V. et al. Neuroanatomical correlates of penile erection evoked by photographic stimuli in human males. Neuroimage 33, 689–699 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Berridge, K. C. Food reward: brain substrates of wanting and liking. Neurosci. Biobehav. Rev. 20, 1–25 (1996).

    Article  CAS  PubMed  Google Scholar 

  98. Smith, K. S. & Berridge, K. C. The ventral pallidum and hedonic reward: neurochemical maps of sucrose “liking” and food intake. J. Neurosci. 25, 8637–8649 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Weil, Z. M., Zhang, Q., Hornung, A., Blizard, D. & Pfaff, D. W. Impact of generalized brain arousal on sexual behavior. Proc. Natl Acad. Sci. USA 107, 2265–2270 (2010).

    Article  PubMed  Google Scholar 

  100. Pfaff, D. W., Kieffer, B. L. & Swanson, L. W. Mechanisms for the regulation of state changes in the central nervous system: an introduction. Ann. NY Acad. Sci. 1129, 1–7 (2008).

    Article  PubMed  Google Scholar 

  101. Hamann, S., Herman, R. A., Nolan, C. L. & Wallen, K. Men and women differ in amygdala response to visual sexual stimuli. Nat. Neurosci. 7, 411–416 (2004).

    Article  CAS  PubMed  Google Scholar 

  102. Beauregard, M., Levesque, J. & Bourgouin, P. Neural correlates of conscious self-regulation of emotion. J. Neurosci. 21, RC165 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Davis, M. & Whalen, P. J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  PubMed  Google Scholar 

  104. Rauch, S. L. et al. Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatry 47, 769–776 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Koukounas, E. & McCabe, M. P. Sexual and emotional variables influencing sexual response to erotica: a psychophysiological investigation. Arch. Sex. Behav. 30, 393–408 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Georgiadis, J. R., Reinders, A. A., van der Graaf, F. H., Paans, A. M. & Kortekaas, R. Brain activation during human male ejaculation revisited. Neuroreport 18, 553–557 (2007).

    Article  PubMed  Google Scholar 

  107. Forbes, C. E. & Grafman, J. The role of the human prefrontal cortex in social cognition and moral judgment. Annu. Rev. Neurosci. 33, 299–324 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. van Netten, J. J., Georgiadis, J. R., Nieuwenburg, A. & Kortekaas, R. 8–13 Hz fluctuations in rectal pressure are an objective marker of clitorally-induced orgasm in women. Arch. Sex. Behav. 37, 279–285 (2008).

    Article  PubMed  Google Scholar 

  109. Bohlen, J. G., Held, J. P., Sanderson, M. O. & Ahlgren, A. The female orgasm: pelvic contractions. Arch. Sex. Behav. 11, 367–386 (1982).

    Article  CAS  PubMed  Google Scholar 

  110. Bohlen, J. G., Held, J. P. & Sanderson, M. O. The male orgasm: pelvic contractions measured by anal probe. Arch. Sex. Behav. 9, 503–521 (1980).

    Article  CAS  PubMed  Google Scholar 

  111. Bechara, A. Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nat. Neurosci. 8, 1458–1463 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Bancroft, J. & Janssen, E. The dual control model of male sexual response: a theoretical approach to centrally mediated erectile dysfunction. Neurosci. Biobehav. Rev. 24, 571–579 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Erskine, M. S. Effects of paced coital stimulation on estrus duration in intact cycling rats and ovariectomized and ovariectomized-adrenalectomized hormone-primed rats. Behav. Neurosci. 99, 151–161 (1985).

    Article  CAS  PubMed  Google Scholar 

  114. Rodriguez-Manzo, G. & Fernandez-Guasti, A. Participation of the central noradrenergic system in the reestablishment of copulatory behavior of sexually exhausted rats by yohimbine, naloxone, and 8-OH-DPAT. Brain Res. Bull. 38, 399–404 (1995).

    Article  CAS  PubMed  Google Scholar 

  115. Pfaus, J. G. & Wilkins, M. F. A novel environment disrupts copulation in sexually naive but not experienced male rats: reversal with naloxone. Physiol. Behav. 57, 1045–1049 (1995).

    Article  CAS  PubMed  Google Scholar 

  116. Fiorino, D. F. & Phillips, A. G. Facilitation of sexual behavior in male rats following d-amphetamine-induced behavioral sensitization. Psychopharmacology (Berl.) 142, 200–208 (1999).

    Article  CAS  Google Scholar 

  117. Pfaus, J. G. & Pinel, J. P. Alcohol inhibits and disinhibits sexual behavior in the male rat. Psychobiology 17, 195–201 (1989).

    CAS  Google Scholar 

  118. Pfaus, J. G. et al. Inhibitory and disinhibitory effects of psychomotor stimulants and depressants on the sexual behavior of male and female rats. Horm. Behav. 58, 163–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Germé, K. et al. Differential pattern of brain activation by an olfactory cue associated with sexual excitation or inhibition in the male rat. Presented at Neuroscience 2011.

  120. Garcia-Horsman, S. P., Agmo, A. & Paredes, R. G. Infusions of naloxone into the medial preoptic area, ventromedial nucleus of the hypothalamus, and amygdala block conditioned place preference induced by paced mating behavior. Horm. Behav. 54, 709–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Cera, N. et al. The role of left superior parietal lobe in male sexual behavior: dynamics of distinct components revealed by fMRI. J. Sex. Med. 9, 1602–1612 (2012).

    Article  PubMed  Google Scholar 

  122. Bianchi-Demicheli, F. et al. Neural bases of hypoactive sexual desire disorder in women: an event-related FMRI study. J. Sex. Med. 8, 2546–2559 (2011).

    Article  PubMed  Google Scholar 

  123. Fisk, G. D. & Wyss, J. M. Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res. 859, 83–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. LeDoux, J. Rethinking the emotional brain. Neuron 73, 653–676 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Georgiadis, J. R. Doing it... wild? On the role of the cerebral cortex in human sexual activity. Sociaffective Neuroscience & Psychology 2, 17337 (2012).

    Article  Google Scholar 

  126. Mostafa, T., Khouly, G. E. & Hassan, A. Pheromones in sex and reproduction: do they have a role in humans? J. Adv. Res. 3, 1–9 (2012).

  127. Mast, T. G. & Samuelsen, C. L. Human pheromone detection by the vomeronasal organ: unnecessary for mate selection? Chem. Senses 34, 529–531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wallen, K. Sex and context: hormones and primate sexual motivation. Horm. Behav. 40, 339–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Johnson, K. L. & Tassinary, L. G. Compatibility of basic social perceptions determines perceived attractiveness. Proc. Natl Acad. Sci. USA 104, 5246–5251 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Brain Res. Rev. 28, 309–369 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Raichle, M. E. & Mintun, M. A. Brain work and brain imaging. Ann. Rev. Neurosci. 29, 449–476 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MLK was funded by TrygFonden Charitable Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in researching data for the article, discussing content, writing and reviewing the manuscript before submission.

Corresponding author

Correspondence to Janniko R. Georgiadis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Georgiadis, J., Kringelbach, M. & Pfaus, J. Sex for fun: a synthesis of human and animal neurobiology. Nat Rev Urol 9, 486–498 (2012). https://doi.org/10.1038/nrurol.2012.151

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing