Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Isolated, disseminated and circulating tumour cells in prostate cancer

Abstract

The loss of single cells from a tumour cell cluster marks an early event in the metastatic process of cancer progression. Although the metastatic cascade in prostate cancer is yet to be fully understood, monitoring circulating tumour cells (CTCs) and quantifying the load of tumour cell dissemination is currently being implemented into routine clinical practice for diagnosing minimal residual disease (MRD), estimating prognosis and monitoring treatment success. Current methods for enrichment of CTCs or disseminated tumour cells (DTCs) and detection of MRD rely on the expression of specific marker genes or proteins that might be altered during the process of tumour cell dissemination, therefore disrupting tumour cell detection. The tumour origin and malignant potential for metastasis of marker-positive cells is not yet clear. Some studies have demonstrated the potential of CTCs or DTCs as prognostic or predictive markers, leading to the increasing implementation of CTC measurement as an end point in clinical trials.

Key Points

  • Systemic shedding of tumour cells marks an early event in tumorigenesis and is a prerequisite for distant recurrence after initial curative therapy

  • Evidence of minimal residual disease (MRD) is a negative prognosticator for prostate cancer

  • Current methods for the enrichment and detection of MRD rely on the expression of specific marker genes or proteins that might be altered during the process of tumour cell dissemination

  • Tumour origin and malignant potential for metastasis of marker-positive cells is not yet clear

  • Circulating and disseminated tumour cells have been reported as prognostic or predictive markers in prostate cancer leading to their increasing implementation as additional end points in clinical trials

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The metastatic cycle.
Figure 2: The compartment model.
Figure 3: Immunohistochemical detection and genomic characterization of isolated tumour cells.
Figure 4: Clinical relevance of MRD detection.

Similar content being viewed by others

References

  1. Center, M. M. et al. International variation in prostate cancer incidence and mortality rates. Eur. Urol. 61, 1079–1092 (2012).

    Article  PubMed  Google Scholar 

  2. Bill-Axelson, A. et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N. Engl. J. Med. 364, 1708–1717 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Yossepowitch, O. et al. The natural history of noncastrate metastatic prostate cancer after radical prostatectomy. Eur. Urol. 51, 940–947 (2007).

    Article  PubMed  Google Scholar 

  4. Loeb, S. et al. Can we stop prostate specific antigen testing 10 years after radical prostatectomy? J. Urol. 186, 500–505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Butler, T. P. & Gullino, P. M. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res. 35, 512–516 (1975).

    CAS  PubMed  Google Scholar 

  6. Ghossein, R. A. et al. Detection of circulating tumor cells in patients with localized and metastatic prostatic carcinoma: clinical implications. J. Clin. Oncol. 13, 1195–1200 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Seiden, M. V. et al. Detection of circulating tumor cells in men with localized prostate cancer. J. Clin. Oncol. 12, 2634–2639 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Sugarbaker, E. V., Cohen, A. M. & Ketcham, A. S. Facilitated metastatic distribution of the Walker 256 tumor in Sprague-Dawley rats with hydrocortisone and-or cyclophosphamide. J. Surg. Oncol. 2, 277–289 (1970).

    Article  CAS  PubMed  Google Scholar 

  9. Kollermann, J. et al. Prognostic significance of disseminated tumor cells in the bone marrow of prostate cancer patients treated with neoadjuvant hormone treatment. J. Clin. Oncol. 26, 4928–4933 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, L. et al. Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer 91, 66–73 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Hull, G. W. et al. Cancer control with radical prostatectomy alone in 1,000 consecutive patients. J. Urol. 167, 528–534 (2002).

    Article  PubMed  Google Scholar 

  12. Yates, D. R. et al. Quantitative RT-PCR analysis of PSA and prostate-specific membrane antigen mRNA to detect circulating tumor cells improves recurrence-free survival nomogram prediction after radical prostatectomy. Prostate http://dx.doi.org/10.1002/pros.22488.

  13. Schmidt, H. et al. Asynchronous growth of prostate cancer is reflected by circulating tumor cells delivered from distinct, even small foci, harboring loss of heterozygosity of the PTEN gene. Cancer Res. 66, 8959–8965 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Hawksworth, D. et al. Overexpression of C-MYC oncogene in prostate cancer predicts biochemical recurrence. Prostate Cancer Prostatic Dis. 13, 311–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Barwick, B. G. et al. Prostate cancer genes associated with TMPRSS2-ERG gene fusion and prognostic of biochemical recurrence in multiple cohorts. Br. J. Cancer 102, 570–576 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schlomm, T. et al. Clinical significance of p53 alterations in surgically treated prostate cancers. Mod. Pathol. 21, 1371–1378 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Pienta, K. J. & Loberg, R. The “emigration, migration, and immigration” of prostate cancer. Clin. Prostate Cancer 4, 24–30 (2005).

    Article  PubMed  Google Scholar 

  18. Mol, A. J., Geldof, A. A., Meijer, G. A., van der Poel, H. G. & van Moorselaar, R. J. New experimental markers for early detection of high-risk prostate cancer: role of cell-cell adhesion and cell migration. J. Cancer Res. Clin. Oncol. 133, 687–695 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Gravdal, K., Halvorsen, O. J., Haukaas, S. A. & Akslen, L. A. A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin. Cancer Res. 13, 7003–7011 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Arya, M. et al. The metastatic cascade in prostate cancer. Surg. Oncol. 15, 117–128 (2006).

    Article  PubMed  Google Scholar 

  21. Kumano, M. et al. Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol. Oncol. 27, 180–186 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Trudel, D., Fradet, Y., Meyer, F., Harel, F. & Tetu, B. Significance of MMP-2 expression in prostate cancer: an immunohistochemical study. Cancer Res. 63, 8511–8515 (2003).

    CAS  PubMed  Google Scholar 

  23. Sanda, M. G. et al. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl Cancer Inst. 87, 280–285 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Taichman, R. S. et al. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res. 62, 1832–1837 (2002).

    CAS  PubMed  Google Scholar 

  25. Cooper, C. R. et al. Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin. Cancer Res. 6, 4839–4847 (2000).

    CAS  PubMed  Google Scholar 

  26. Glinsky, V. V. et al. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res. 61, 4851–4857 (2001).

    CAS  PubMed  Google Scholar 

  27. Barrett, J. M., Mangold, K. A., Jilling, T. & Kaul, K. L. Bi-directional interactions of prostate cancer cells and bone marrow endothelial cells in three-dimensional culture. Prostate 64, 75–82 (2005).

    Article  PubMed  Google Scholar 

  28. Jin, J. K., Dayyani, F. & Gallick, G. E. Steps in prostate cancer progression that lead to bone metastasis. Int. J. Cancer 128, 2545–2561 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yates, C. C., Shepard, C. R., Stolz, D. B. & Wells, A. Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. Br. J. Cancer 96, 1246–1252 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saha, B. et al. Overexpression of E-cadherin and beta-catenin proteins in metastatic prostate cancer cells in bone. Prostate 68, 78–84 (2008).

    Article  PubMed  Google Scholar 

  31. Pantel, K. & Brakenhoff, R. H. Dissecting the metastatic cascade. Nat. Rev. Cancer 4, 448–456 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Miller, M. C., Doyle, G. V. & Terstappen, L. W. Significance of circulating tumor cells detected by the CellSearch System in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 617421 (2010).

    Article  PubMed  Google Scholar 

  33. Schmitt, M. & Foekens, J. A. Circulating tumor cells in blood of primary breast cancer patients assessed by a novel RT-PCR test kit and comparison with status of bone marrow-disseminated tumor cells. Breast Cancer Res. 11, 109 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stapleton, A. M. et al. Primary human prostate cancer cells harboring p53 mutations are clonally expanded in metastases. Clin. Cancer Res. 3, 1389–1397 (1997).

    CAS  PubMed  Google Scholar 

  35. Paris, P. L. et al. Functional phenotyping and genotyping of circulating tumor cells from patients with castration resistant prostate cancer. Cancer Lett. 277, 164–173 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Attard, G. et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res. 69, 2912–2918 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Oberneder, R. et al. Immunocytochemical detection and phenotypic characterization of micrometastatic tumour cells in bone marrow of patients with prostate cancer. Urol. Res. 22, 3–8 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. Alix-Panabieres, C. et al. Detection and characterization of putative metastatic precursor cells in cancer patients. Clin. Chem. 53, 537–539 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Jenkins, R. B., Qian, J., Lieber, M. M. & Bostwick, D. G. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531 (1997).

    CAS  PubMed  Google Scholar 

  40. Schilling, D. et al. Quantification of tumor cell burden by analysis of single cell lymph node disaggregates in metastatic prostate cancer. Prostate 70, 1110–1118 (2010).

    Article  PubMed  Google Scholar 

  41. de la Taille, A. et al. Detection of prostate-specific membrane antigen expressing cells in blood obtained from renal cancer patients: a potential biomarker of vascular invasion. Cancer Detect. Prev. 24, 579–588 (2000).

    CAS  PubMed  Google Scholar 

  42. Racila, E. et al. Detection and characterization of carcinoma cells in the blood. Proc. Natl Acad. Sci. USA 95, 4589–4594 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zieglschmid, V., Hollmann, C. & Bocher, O. Detection of disseminated tumor cells in peripheral blood. Crit. Rev. Clin. Lab. Sci. 42, 155–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vona, G. et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am. J. Pathol. 156, 57–63 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gertler, R. et al. Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res. 162, 149–155 (2003).

    Article  PubMed  Google Scholar 

  47. Gleghorn, J. P. et al. Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10, 27–29 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Antolovic, D. et al. Heterogeneous detection of circulating tumor cells in patients with colorectal cancer by immunomagnetic enrichment using different EpCAM-specific antibodies. BMC Biotechnol. 10, 35 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Allan, A. L. & Keeney, M. Circulating tumor cell analysis: technical and statistical considerations for application to the clinic. J. Oncol. 2010, 426218 (2010).

    Article  PubMed  Google Scholar 

  50. Aktas, B. et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res. 11, R46 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. He, W. et al. Quantitation of circulating tumor cells in blood samples from ovarian and prostate cancer patients using tumor-specific fluorescent ligands. Int. J. Cancer 123, 1968–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shaffer, D. R. et al. Circulating tumor cell analysis in patients with progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 2023–2029 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Ghossein, R. A., Carusone, L. & Bhattacharya, S. Review: polymerase chain reaction detection of micrometastases and circulating tumor cells: application to melanoma, prostate, and thyroid carcinomas. Diagn. Mol. Pathol. 8, 165–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Helo, P. et al. Circulating prostate tumor cells detected by reverse transcription-PCR in men with localized or castration-refractory prostate cancer: concordance with CellSearch assay and association with bone metastases and with survival. Clin. Chem. 55, 765–773 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Andreopoulou, E. et al. Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaGen AdnaTest BreastCancer Select/Detect versus Veridex CellSearch system. Int. J. Cancer 130, 1590–1597 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Todenhoefer, T. et al. PCR-based detection of circulating tumor cells in prostate cancer—preliminary experience. Eur. Urol. Suppl. 11, e429 (2012).

    Article  Google Scholar 

  57. Berg, A. et al. Disseminated tumor cells in bone marrow following definitive radiotherapy for intermediate or high-risk prostate cancer. Prostate 68, 1607–1614 (2008).

    Article  PubMed  Google Scholar 

  58. Ikeda, S. et al. Combined immunohistochemistry of beta-catenin, cytokeratin 7, and cytokeratin 20 is useful in discriminating primary lung adenocarcinomas from metastatic colorectal cancer. BMC Cancer 6, 31 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Woelfle, U., Sauter, G., Santjer, S., Brakenhoff, R. & Pantel, K. Down-regulated expression of cytokeratin 18 promotes progression of human breast cancer. Clin. Cancer Res. 10, 2670–2674 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Fehm, T. et al. A concept for the standardized detection of disseminated tumor cells in bone marrow from patients with primary breast cancer and its clinical implementation. Cancer 107, 885–892 (2006).

    Article  PubMed  Google Scholar 

  61. Panteleakou, Z. et al. Detection of circulating tumor cells in prostate cancer patients: methodological pitfalls and clinical relevance. Mol. Med. 15, 101–114 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Trzpis, M., McLaughlin, P. M., de Leij, L. M. & Harmsen, M. C. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am. J. Pathol. 171, 386–395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Benko, G., Spajic, B., Kruslin, B. & Tomas, D. Impact of the EpCAM expression on biochemical recurrence-free survival in clinically localized prostate cancer. Urol. Oncol. http://dx.doi.org/10.1016/j.urolonc.2011.03.007.

  64. McIntyre, I. G. et al. The molecular staging of prostate cancer. BJU Int. 94, 1217–1220 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Katz, A. E. et al. Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43, 765–775 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Ghossein, R. A., Carusone, L. & Bhattacharya, S. Molecular detection of micrometastases and circulating tumor cells in melanoma prostatic and breast carcinomas. In Vivo 14, 237–250 (2000).

    CAS  PubMed  Google Scholar 

  67. Corey, E. & Corey, M. J. Detection of disseminated prostate cells by reverse transcription-polymerase chain reaction (RT-PCR): technical and clinical aspects. Int. J. Cancer 77, 655–673 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Zippelius, A., Lutterbuse, R., Riethmuller, G. & Pantel, K. Analytical variables of reverse transcription-polymerase chain reaction-based detection of disseminated prostate cancer cells. Clin. Cancer Res. 6, 2741–2750 (2000).

    CAS  PubMed  Google Scholar 

  69. Berois, N. et al. Molecular detection of cancer cells in bone marrow and peripheral blood of patients with operable breast cancer. Comparison of CK19, MUC1 and CEA using RT-PCR. Eur. J. Cancer 36, 717–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Kusuda, Y., Miyake, H., Kurahashi, T. & Fujisawa, M. Assessment of optimal target genes for detecting micrometastases in pelvic lymph nodes in patients with prostate cancer undergoing radical prostatectomy by real-time reverse transcriptase-polymerase chain reaction. Urol. Oncol. (2011).

  71. Devriese, L. A. et al. Circulating tumor cell detection in advanced non-small cell lung cancer patients by multi-marker QPCR analysis. Lung Cancer 75, 242–247 (2011).

    Article  PubMed  Google Scholar 

  72. Chen, Y. et al. Detection of cytokeratin 19, human mammaglobin, and carcinoembryonic antigen-positive circulating tumor cells by three-marker reverse transcription-PCR assay and its relation to clinical outcome in early breast cancer. Int. J. Biol. Markers 25, 59–68 (2010).

    Article  PubMed  Google Scholar 

  73. Henke, W. et al. Increased analytical sensitivity of RT-PCR of PSA mRNA decreases diagnostic specificity of detection of prostatic cells in blood. Int. J. Cancer 70, 52–56 (1997).

    Article  CAS  PubMed  Google Scholar 

  74. Lintula, S. & Stenman, U. H. The expression of prostate-specific membrane antigen in peripheral blood leukocytes. J. Urol. 157, 1969–1972 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Lambrechts, A. C. et al. Comparison of immunocytochemistry, reverse transcriptase polymerase chain reaction, and nucleic acid sequence-based amplification for the detection of circulating breast cancer cells. Breast Cancer Res. Treat. 56, 219–231 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Balducci, E. et al. A new nested primer pair improves the specificity of CK-19 mRNA detection by RT-PCR in occult breast cancer cells. Int. J. Biol. Markers 20, 28–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Corey, E. et al. Detection of circulating prostate cells by reverse transcriptase-polymerase chain reaction of human glandular kallikrein (hK2) and prostate-specific antigen (PSA) messages. Urology 50, 184–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Mukherjee, S. et al. Identification of EpCAM as a molecular target of prostate cancer stroma. Am. J. Pathol. 175, 2277–2287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bussemakers, M. J. et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975–5979 (1999).

    CAS  PubMed  Google Scholar 

  80. van Gils, M. P. et al. The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin. Cancer Res. 13, 939–943 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Lin, H. K. et al. Portable filter-based microdevice for detection and characterization of circulating tumor cells. Clin. Cancer Res. 16, 5011–5018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Danila, D. C., Fleisher, M. & Scher, H. I. Circulating tumor cells as biomarkers in prostate cancer. Clin. Cancer Res. 17, 3903–3912 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Riethdorf, S. et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin. Cancer Res. 13, 920–928 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Bonnomet, A. et al. Epithelial-to-mesenchymal transitions and circulating tumor cells. J. Mammary Gland Biol. Neoplasia 15, 261–273 (2010).

    Article  PubMed  Google Scholar 

  85. Armstrong, A. J. et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol. Cancer Res. 9, 997–1007 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L. et al. Flow cytometric analysis of CK19 expression in the peripheral blood of breast carcinoma patients: relevance for circulating tumor cell detection. J. Exp. Clin. Cancer Res. 28, 57 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Riethdorf, S., Wikman, H. & Pantel, K. Review: Biological relevance of disseminated tumor cells in cancer patients. Int. J. Cancer 123, 1991–2006 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Morgan, T. M. et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin. Cancer Res. 15, 677–683 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fehm, T. et al. HER2 status of circulating tumor cells in patients with metastatic breast cancer: a prospective, multicenter trial. Breast Cancer Res. Treat. 124, 403–412 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Danila, D. C. et al. TMPRSS2-ERG status in circulating tumor cells as a predictive biomarker of sensitivity in castration-resistant prostate cancer patients treated with abiraterone acetate. Eur. Urol. 60, 897–904 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moul, J. W. et al. Immunohistologic detection of prostate cancer pelvic lymph node micrometastases: correlation to preoperative serum prostate-specific antigen. Urology 43, 68–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  94. Gomella, L. G., White, J. L., McCue, P. A., Byrne, D. S. & Mulholland, S. G. Screening for occult nodal metastasis in localized carcinoma of the prostate. J. Urol. 149, 776–778 (1993).

    Article  CAS  PubMed  Google Scholar 

  95. Martinez-Pineiro, L. et al. Molecular staging of prostatic cancer with RT-PCR assay for prostate-specific antigen in peripheral blood and lymph nodes: comparison with standard histological staging and immunohistochemical assessment of occult regional lymph node metastases. Eur. Urol. 43, 342–350 (2003).

    Article  PubMed  Google Scholar 

  96. Wawroschek, F. et al. The influence of serial sections, immunohistochemistry, and extension of pelvic lymph node dissection on the lymph node status in clinically localized prostate cancer. Eur. Urol. 43, 132–136 (2003).

    Article  PubMed  Google Scholar 

  97. Fukuda, M. et al. Detection of sentinel node micrometastasis by step section and immunohistochemistry in patients with prostate cancer. J. Urol. 177, 1313–1317 (2007).

    Article  PubMed  Google Scholar 

  98. Schilling, D. et al. Prospective assessment of histological serial sectioning of pelvic lymph nodes in prostate cancer: a cost-benefit analysis. BJU Int. http://dx.doi.org/10.1111/j.1464-410X.2012.10928.x.

  99. Epstein, J. I., Srigley, J., Grignon, D. & Humphrey, P. Recommendations for the reporting of prostate carcinoma: Association of Directors of Anatomic and Surgical Pathology. Am. J. Clin. Pathol. 129, 24–30 (2008).

    Article  PubMed  Google Scholar 

  100. Moreno, J. G. et al. Circulating tumor cells predict survival in patients with metastatic prostate cancer. Urology 65, 713–718 (2005).

    Article  PubMed  Google Scholar 

  101. Danila, D. C. et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin. Cancer Res. 13, 7053–7058 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Scher, H. I. et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol. 10, 233–239 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Bono, J. S. et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin. Cancer Res. 14, 6302–6309 (2008).

    Article  CAS  PubMed  Google Scholar 

  104. Olmos, D. et al. Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann. Oncol. 20, 27–33 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Goodman, O. B. Jr et al. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin. Genitourin. Cancer 9, 31–38 (2011).

    Article  PubMed  Google Scholar 

  106. Chen, B. T. et al. Preliminary study of immunomagnetic quantification of circulating tumor cells in patients with advanced disease. Urology 65, 616–621 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Davis, J. W. et al. Circulating tumor cells in peripheral blood samples from patients with increased serum prostate specific antigen: initial results in early prostate cancer. J. Urol. 179, 2187–2191 (2008).

    Article  PubMed  Google Scholar 

  108. Darshan, M. S. et al. Taxane-induced blockade to nuclear accumulation of the androgen receptor predicts clinical responses in metastatic prostate cancer. Cancer Res. 71, 6019–6029 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang, Y., Palma, J. F., Agus, D. B., Wang, Y. & Gross, M. E. Detection of androgen receptor mutations in circulating tumor cells in castration-resistant prostate cancer. Clin. Chem. 56, 1492–1495 (2010).

    Article  PubMed  Google Scholar 

  110. de Bono, J. S. et al. Abiraterone and increased survival in metastatic prostate cancer. N. Engl. J. Med. 364, 1995–2005 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Weckermann, D. et al. Disseminated cytokeratin positive tumor cells in the bone marrow of patients with prostate cancer: detection and prognostic value. J. Urol. 166, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Weckermann, D., Wawroschek, F., Krawczak, G., Haude, K. H. & Harzmann, R. Does the immunocytochemical detection of epithelial cells in bone marrow (micrometastasis) influence the time to biochemical relapse after radical prostatectomy? Urol. Res. 27, 285–290 (1999).

    Article  PubMed  Google Scholar 

  114. Berg, A. et al. Impact of disseminated tumor cells in bone marrow at diagnosis in patients with nonmetastatic prostate cancer treated by definitive radiotherapy. Int. J. Cancer 120, 1603–1609 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Weckermann, D. et al. Perioperative activation of disseminated tumor cells in bone marrow of patients with prostate cancer. J. Clin. Oncol. 27, 1549–1556 (2009).

    Article  PubMed  Google Scholar 

  116. Wood, D. P. Jr & Banerjee, M. Presence of circulating prostate cells in the bone marrow of patients undergoing radical prostatectomy is predictive of disease-free survival. J. Clin. Oncol. 15, 3451–3457 (1997).

    Article  PubMed  Google Scholar 

  117. Gao, C. L. et al. Detection of circulating prostate specific antigen expressing prostatic cells in the bone marrow of radical prostatectomy patients by sensitive reverse transcriptase polymerase chain reaction. J. Urol. 161, 1070–1076 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Mitsiades, C. S. et al. Molecular staging by RT-pCR analysis for PSA and PSMA in peripheral blood and bone marrow samples is an independent predictor of time to biochemical failure following radical prostatectomy for clinically localized prostate cancer. Clin. Exp. Metastasis 21, 495–505 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Pfitzenmaier, J. et al. The detection and isolation of viable prostate-specific antigen positive epithelial cells by enrichment: a comparison to standard prostate-specific antigen reverse transcriptase polymerase chain reaction and its clinical relevance in prostate cancer. Urol. Oncol. 25, 214–220 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Pagliarulo, V. et al. Detection of occult lymph node metastases in locally advanced node-negative prostate cancer. J. Clin. Oncol. 24, 2735–2742 (2006).

    Article  PubMed  Google Scholar 

  121. Fleischmann, A., Schobinger, S., Schumacher, M., Thalmann, G. N. & Studer, U. E. Survival in surgically treated, nodal positive prostate cancer patients is predicted by histopathological characteristics of the primary tumor and its lymph node metastases. Prostate 69, 352–362 (2009).

    Article  PubMed  Google Scholar 

  122. Ferrari, A. C. et al. Molecular load of pathologically occult metastases in pelvic lymph nodes is an independent prognostic marker of biochemical failure after localized prostate cancer treatment. J. Clin. Oncol. 24, 3081–3088 (2006).

    Article  CAS  PubMed  Google Scholar 

  123. Schostak, M. et al. Does the molecular staging in pelvic lymph nodes improve the detection of relevant prostate cancer metastases? An assessment after 6 years. BJU Int. 99, 1409–1414 (2007).

    Article  PubMed  Google Scholar 

  124. Miyake, H. et al. Quantitative detection of micrometastases in pelvic lymph nodes in patients with clinically localized prostate cancer by real-time reverse transcriptase-PCR. Clin. Cancer Res. 13, 1192–1197 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Shariat, S. F. et al. Detection of clinically significant, occult prostate cancer metastases in lymph nodes using a splice variant-specific rt-PCR assay for human glandular kallikrein. J. Clin. Oncol. 21, 1223–1231 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Shariat, S. F. et al. Comparison of immunohistochemistry with reverse transcription-PCR for the detection of micrometastatic prostate cancer in lymph nodes. Cancer Res. 63, 4662–4670 (2003).

    CAS  PubMed  Google Scholar 

  127. Srigley, J. R. et al. Updated protocol for the examination of specimens from patients with carcinomas of the prostate gland. Arch. Pathol. Lab. Med. 130, 936–946 (2006).

    PubMed  Google Scholar 

  128. Reid, A. H. et al. Significant and sustained antitumor activity in post-docetaxel, castration-resistant prostate cancer with the CYP17 inhibitor abiraterone acetate. J. Clin. Oncol. 28, 1489–1495 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol. 28, 1496–1501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wittekind, C. Diagnosis and staging of lymph node metastasis. Recent Results Cancer Res. 157, 20–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  131. Konigsberg, R. et al. Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol. 50, 700–710 (2011).

    Article  PubMed  Google Scholar 

  132. Deng, G. et al. Enrichment with anti-cytokeratin alone or combined with anti-EpCAM antibodies significantly increases the sensitivity for circulating tumor cell detection in metastatic breast cancer patients. Breast Cancer Res. 10, R69 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Martin, V. M. et al. Immunomagnetic enrichment of disseminated epithelial tumor cells from peripheral blood by MACS. Exp. Hematol. 26, 252–264 (1998).

    CAS  PubMed  Google Scholar 

  134. Fehm, T. et al. ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res. 10, R76 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kollermann, J. et al. Methylation-specific PCR for DNA-based detection of occult tumor cells in lymph nodes of prostate cancer patients. Eur. Urol. 44, 533–538 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Mayer, J. A. et al. FISH-based determination of HER2 status in circulating tumor cells isolated with the microfluidic CEE platform. Cancer Genet. 204, 589–595 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Bianco, F. J., Jr, Powell, I. J., Cher, M. L. & Wood, D. P. Jr. Presence of circulating prostate cancer cells in African American males adversely affects survival. Urol. Oncol. 7, 147–152 (2002).

    Article  PubMed  Google Scholar 

  138. Joung, J. Y. et al. Prostate stem cell antigen mRNA in peripheral blood as a potential predictor of biochemical recurrence in high-risk prostate cancer. J. Surg. Oncol. 101, 145–148 (2010).

    PubMed  Google Scholar 

  139. Shariat, S. F. et al. Preoperative blood reverse transcriptase-PCR assays for prostate-specific antigen and human glandular kallikrein for prediction of prostate cancer progression after radical prostatectomy. Cancer Res. 62, 5974–5979 (2002).

    CAS  PubMed  Google Scholar 

  140. Goodman, O. B. Jr et al. Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol. Biomarkers Prev. 18, 1904–1913 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Okegawa, T., Nutahara, K. & Higashihara, E. Prognostic significance of circulating tumor cells in patients with hormone refractory prostate cancer. J. Urol. 181, 1091–1097 (2009).

    Article  PubMed  Google Scholar 

  142. Coumans, F. A., Doggen, C. J., Attard, G., de Bono, J. S. & Terstappen, L. W. All circulating EpCAM+CK+CD45- objects predict overall survival in castration-resistant prostate cancer. Ann. Oncol. 21, 1851–1857 (2010).

    Article  CAS  PubMed  Google Scholar 

  143. Strijbos, M. H. et al. Circulating endothelial cells, circulating tumour cells, tissue factor, endothelin-1 and overall survival in prostate cancer patients treated with docetaxel. Eur. J. Cancer 46, 2027–2035 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Ghossein, R. A. et al. Prognostic significance of detection of prostate-specific antigen transcripts in the peripheral blood of patients with metastatic androgen-independent prostatic carcinoma. Urology 50, 100–105 (1997).

    Article  CAS  PubMed  Google Scholar 

  145. Olsson, C. A. et al. Preoperative reverse transcriptase polymerase chain reaction for prostate specific antigen predicts treatment failure following radical prostatectomy. J. Urol. 155, 1557–1562 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Oefelein, M. G., Ignatoff, J. M., Clemens, J. Q., Watkin, W. & Kaul, K. L. Clinical and molecular followup after radical retropubic prostatectomy. J. Urol. 162, 307–310 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Thomas, J. et al. Preoperative combined nested reverse transcriptase polymerase chain reaction for prostate-specific antigen and prostate-specific membrane antigen does not correlate with pathologic stage or biochemical failure in patients with localized prostate cancer undergoing radical prostatectomy. J. Clin. Oncol. 20, 3213–3218 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Eschwege, P. et al. Prognostic value of prostate circulating cells detection in prostate cancer patients: a prospective study. Br. J. Cancer 100, 608–610 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Garcia, J. A. et al. Evaluation and significance of circulating epithelial cells in patients with hormone-refractory prostate cancer. BJU Int. 99, 519–524 (2007).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Miriam Germann for diligently reviewing and correcting the manuscript and Till Bechtold, Oliver Borst, Sascha Hoffmann and Kai Januschowski for fruitful discussions and valuable advice while preparing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D. Schilling and T. Todenhöfer contributed equally to researching data for the article, writing the article and reviewing the manuscript before submission. J. Hennenlotter provided a substantial contribution to researching data for the article, discussion of content and reviewing the manuscript before submission. C. Schwentner, T. Fehm and A. Stenzl provided substantial contributions to discussion of content and reviewing the manuscript before submission.

Corresponding author

Correspondence to David Schilling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schilling, D., Todenhöfer, T., Hennenlotter, J. et al. Isolated, disseminated and circulating tumour cells in prostate cancer. Nat Rev Urol 9, 448–463 (2012). https://doi.org/10.1038/nrurol.2012.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.136

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer