Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical potential of the ERG oncoprotein in prostate cancer

Abstract

Oncogenic activation of ERG resulting from gene fusion is present in over half of all patients with prostate cancer in Western countries. Although the underlying genetic mechanisms have been extensively studied, evaluation of the ERG oncoprotein—the translational product of ERG gene fusions—has just begun. The robust correlation between ERG oncoprotein detection and gene fusion status enables rapid characterization of this protein in large patient cohorts. Recent studies have focused on characterizing the ERG oncoprotein and determining its potential role in the diagnosis and biological stratification of prostate cancer.

Key Points

  • The highly specific detection of ERG oncoprotein by anti-ERG mAbs offers unprecedented opportunities for the diagnosis of prostate cancer in a large proportion of patients

  • Strong concordance between focally ERG-positive prostatic intraepithelial neoplasia and homogeneously ERG-positive carcinoma suggests a role for ERG in clonal selection of prostate cancer cells during progression from preinvasive to invasive disease

  • Detection of ERG oncoprotein provides an opportunity for stratifying prostate cancers on the basis of a causative oncogenic activation

  • Decreased ERG expression in a subset of advanced tumors may reflect attenuated AR status indicating the dysfunction of androgen signaling

  • Although the prognostic value of ERG gene fusions remains uncertain, careful evaluation of ERG oncoprotein expression levels in combination with other markers may have a potential in prognosing and monitoring disease progression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Detection of ERG protein expression using the mouse anti-ERG mAb 9FY.
Figure 2: Potential clinical utility of ERG.

Similar content being viewed by others

References

  1. Siegel, R., Ward, E., Brawley, O. & Jemal, A. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J. Clin. 61, 212–236 (2011).

    PubMed  Google Scholar 

  2. Ernst, T. et al. Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am. J. Pathol. 160, 2169–2180 (2002).

    Article  CAS  Google Scholar 

  3. Vanaja, D. K., Cheville, J. C., Iturria, S. J. & Young, C. Y. Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Res. 63, 3877–3882 (2003).

    CAS  PubMed  Google Scholar 

  4. Petrovics, G. et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 24, 3847–3852 (2005).

    Article  CAS  Google Scholar 

  5. Tomlins, S. A. et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310, 644–648 (2005).

    Article  CAS  Google Scholar 

  6. Tomlins, S. A. et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448, 595–599 (2007).

    Article  CAS  Google Scholar 

  7. Kumar-Sinha, C., Tomlins, S. A. & Chinnaiyan, A. M. Recurrent gene fusions in prostate cancer. Nat. Rev. Cancer 8, 497–511 (2008).

    Article  CAS  Google Scholar 

  8. Pflueger, D. et al. N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia 11, 804–811 (2009).

    Article  CAS  Google Scholar 

  9. Sreenath, T., Dobi, A., Petrovics, G. & Srivastava, S. Oncogenic activation of ERG: a predominant mechanism in prostate cancer. J. Carcinog. http://dx.doi.org/10.4103/1477-316391122.

  10. Rubin, M. A., Maher, C. A. & Chinnaiyan, A. M. Common gene rearrangements in prostate cancer. J. Clin. Oncol. 29, 3659–3668 (2011).

    Article  CAS  Google Scholar 

  11. Clark, J. P. & Cooper, C. S. ETS gene fusions in prostate cancer. Nat. Rev. Urol. 6, 429–439 (2009).

    Article  CAS  Google Scholar 

  12. Narod, S. A., Seth, A. & Nam, R. Fusion in the ETS gene family and prostate cancer. Br. J. Cancer 99, 847–851 (2008).

    Article  CAS  Google Scholar 

  13. Tomlins, S. A. et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 10, 177–188 (2008).

    Article  CAS  Google Scholar 

  14. Klezovitch, O. et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc. Natl Acad. Sci. USA 105, 2105–2110 (2008).

    Article  Google Scholar 

  15. King, J. C. et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat. Genet. 41, 524–526 (2009).

    Article  CAS  Google Scholar 

  16. Carver, B. S. et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat. Genet. 41, 619–624 (2009).

    Article  CAS  Google Scholar 

  17. Zong, Y. et al. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc. Natl Acad. Sci. USA 106, 12465–12470 (2009).

    Article  CAS  Google Scholar 

  18. Sun, C. et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 27, 5348–5353 (2008).

    Article  CAS  Google Scholar 

  19. Brenner, J. C. et al. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19, 664–678 (2011).

    Article  CAS  Google Scholar 

  20. Kunderfranco, P. et al. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS ONE 5, e10547 (2010).

    Article  Google Scholar 

  21. Yu, J. et al. An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454 (2010).

    Article  CAS  Google Scholar 

  22. Mohamed, A. A. et al. ERG oncogene modulates prostaglandin signaling in prostate cancer cells. Cancer Biol. Ther. 11, 410–417 (2011).

    Article  CAS  Google Scholar 

  23. Wang, J. et al. Activation of NF-{kappa}B by TMPRSS2/ERG fusion isoforms through Toll-like receptor-4. Cancer Res. 71, 1325–1333 (2011).

    Article  CAS  Google Scholar 

  24. Leshem, O. et al. TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS ONE 6, e21650 (2011).

    Article  CAS  Google Scholar 

  25. Saramaki, O. R. et al. TMPRSS2:ERG fusion identifies a subgroup of prostate cancers with a favorable prognosis. Clin. Cancer Res. 14, 3395–3400 (2008).

    Article  Google Scholar 

  26. Winnes, M., Lissbrant, E., Damber, J. E. & Stenman, G. Molecular genetic analyses of the TMPRSS2-ERG and TMPRSS2-ETV1 gene fusions in 50 cases of prostate cancer. Oncol. Rep. 17, 1033–1036 (2007).

    CAS  PubMed  Google Scholar 

  27. Gopalan, A. et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res. 69, 1400–1406 (2009).

    Article  CAS  Google Scholar 

  28. Dobi, A. et al. ERG expression levels in prostate tumors reflect functional status of the androgen receptor (AR) as a consequence of fusion of ERG with AR regulated gene promoters. The Open Cancer Journal 3, 101–108 (2010).

    Article  CAS  Google Scholar 

  29. Hermans, K. G. et al. TMPRSS2:ERG fusion by translocation or interstitial deletion is highly relevant in androgen-dependent prostate cancer, but is bypassed in late-stage androgen receptor-negative prostate cancer. Cancer Res. 66, 10658–10663 (2006).

    Article  CAS  Google Scholar 

  30. Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    Article  CAS  Google Scholar 

  31. Nam, R. K. et al. Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. Br. J. Cancer 97, 1690–1695 (2007).

    Article  CAS  Google Scholar 

  32. Demichelis, F. et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 26, 4596–4599 (2007).

    Article  CAS  Google Scholar 

  33. Perner, S. et al. TMPRSS2:ERG fusion-associated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res. 66, 8337–8341 (2006).

    Article  CAS  Google Scholar 

  34. Wang, J., Cai, Y., Ren, C. & Ittmann, M. Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66, 8347–8351 (2006).

    Article  CAS  Google Scholar 

  35. Rajput, A. B. et al. Frequency of the TMPRSS2:ERG gene fusion is increased in moderate to poorly differentiated prostate cancers. J. Clin. Pathol. 60, 1238–1243 (2007).

    Article  CAS  Google Scholar 

  36. Tomlins, S. A. et al. ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur. Urol. 56, 275–286 (2009).

    Article  CAS  Google Scholar 

  37. Bonaccorsi, L. et al. Persistence of expression of the TMPRSS2:ERG fusion gene after pre-surgery androgen ablation may be associated with early prostate specific antigen relapse of prostate cancer: preliminary results. J. Endocrinol. Invest. 32, 590–596 (2009).

    Article  CAS  Google Scholar 

  38. Turner, D. P. & Watson, D. K. ETS transcription factors: oncogenes and tumor suppressor genes as therapeutic targets for prostate cancer. Expert Rev. Anticancer Ther. 8, 33–42 (2008).

    Article  CAS  Google Scholar 

  39. Reddy, E. S., Rao, V. N. & Papas, T. S. The erg gene: a human gene related to the ets oncogene. Proc. Natl Acad. Sci. USA 84, 6131–6135 (1987).

    Article  CAS  Google Scholar 

  40. Furusato, B. et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis. 13, 228–237 (2010).

    Article  CAS  Google Scholar 

  41. Park, K. et al. Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12, 590–598 (2010).

    Article  CAS  Google Scholar 

  42. Mohamed, A. A. et al. Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J. Cancer 1, 197–208 (2010).

    Article  CAS  Google Scholar 

  43. Hu, Y. et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin. Cancer Res. 14, 4719–4725 (2008).

    Article  CAS  Google Scholar 

  44. Baltzinger, M., Mager-Heckel, A. M. & Remy, P. Xl erg: expression pattern and overexpression during development plead for a role in endothelial cell differentiation. Dev. Dyn. 216, 420–433 (1999).

    Article  CAS  Google Scholar 

  45. Birdsey, G. M. et al. Transcription factor Erg regulates angiogenesis and endothelial apoptosis through VE-cadherin. Blood 111, 3498–3506 (2008).

    Article  CAS  Google Scholar 

  46. Ellett, F., Kile, B. T. & Lieschke, G. J. The role of the ETS factor erg in zebrafish vasculogenesis. Mech. Dev. 126, 220–229 (2009).

    Article  CAS  Google Scholar 

  47. Miettinen, M. et al. ERG transcription factor as an immunohistochemical marker for vascular endothelial tumors and prostatic carcinoma. Am. J. Surg. Pathol. 35, 432–441 (2011).

    Article  Google Scholar 

  48. van Leenders, G. J. et al. Antibody EPR3864 is specific for ERG genomic fusions in prostate cancer: implications for pathological practice. Mod. Pathol. 24, 1128–1138 (2011).

    Article  CAS  Google Scholar 

  49. Chaux, A. et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am. J. Surg. Pathol. 35, 1014–1020 (2011).

    Article  Google Scholar 

  50. Falzarano, S. M. et al. ERG gene rearrangement status in prostate cancer detected by immunohistochemistry. Virchows Arch. 459, 441–447 (2011).

    Article  CAS  Google Scholar 

  51. Minner, S. et al. ERG status is unrelated to PSA recurrence in radically operated prostate cancer in the absence of antihormonal therapy. Clin. Cancer Res. 17, 5878–5888 (2011).

    Article  CAS  Google Scholar 

  52. Braun, M. et al. ERG protein expression and genomic rearrangement status in primary and metastatic prostate cancer - a comparative study of two monoclonal antibodies. Prostate Cancer Prostatic Dis. http://dx.doi.org/10.1038/pcan.2011.67.

  53. He, H. et al. The diagnostic utility of novel immunohistochemical marker ERG in the workup of prostate biopsies with “atypical glands suspicious for cancer”. Am. J. Surg. Pathol. 35, 608–614 (2011).

    Article  Google Scholar 

  54. Yaskiv, O. et al. The utility of ERG/P63 double immunohistochemical staining in the diagnosis of limited cancer in prostate needle biopsies. Am. J. Surg. Pathol. 35, 1062–1068 (2011).

    Article  Google Scholar 

  55. Scheble, V. J. et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod. Pathol. 23, 1061–1067 (2010).

    Article  CAS  Google Scholar 

  56. Marcucci, G. et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J. Clin. Oncol. 23, 9234–9242 (2005).

    Article  CAS  Google Scholar 

  57. Kong, X. T. et al. Consistent detection of TLS/FUS-ERG chimeric transcripts in acute myeloid leukemia with t(16;21)(p11;q22) and identification of a novel transcript. Blood 90, 1192–1199 (1997).

    CAS  PubMed  Google Scholar 

  58. Baldus, C. D. et al. Acute myeloid leukemia with complex karyotypes and abnormal chromosome 21: Amplification discloses overexpression of APP, ETS2, and ERG genes. Proc. Natl Acad. Sci. USA 101, 3915–3920 (2004).

    Article  CAS  Google Scholar 

  59. Falzarano, S. M. et al. Single focus prostate cancer: pathological features and ERG fusion status. J. Urol. 185, 489–494 (2011).

    Article  Google Scholar 

  60. Mosquera, J. M. et al. Characterization of TMPRSS2-ERG fusion high-grade prostatic intraepithelial neoplasia and potential clinical implications. Clin. Cancer Res. 14, 3380–3385 (2008).

    Article  CAS  Google Scholar 

  61. Lotan, T. L. et al. ERG gene rearrangements are common in prostatic small cell carcinomas. Mod. Pathol. 24, 820–828 (2011).

    Article  CAS  Google Scholar 

  62. Cerveira, N. et al. TMPRSS2-ERG gene fusion causing ERG overexpression precedes chromosome copy number changes in prostate carcinomas and paired HGPIN lesions. Neoplasia 8, 826–832 (2006).

    Article  CAS  Google Scholar 

  63. Perner, S. et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am. J. Surg. Pathol. 31, 882–888 (2007).

    Article  Google Scholar 

  64. Clark, J. et al. Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27, 1993–2003 (2008).

    Article  CAS  Google Scholar 

  65. Braun, M., Menon, R., Nikolov, P. & Perner, S. ERG rearrangement as a clonal expansion marker for prostate cancer. The Open Prostate Cancer Journal 3, 63–68 (2010).

    Article  CAS  Google Scholar 

  66. Han, B. et al. Fluorescence in situ hybridization study shows association of PTEN deletion with ERG rearrangement during prostate cancer progression. Mod. Pathol. 22, 1083–1093 (2009).

    Article  CAS  Google Scholar 

  67. Iljin, K. et al. TMPRSS2 fusions with oncogenic ETS factors in prostate cancer involve unbalanced genomic rearrangements and are associated with HDAC1 and epigenetic reprogramming. Cancer Res. 66, 10242–10246 (2006).

    Article  CAS  Google Scholar 

  68. Wang, J. et al. Pleiotropic biological activities of alternatively spliced TMPRSS2/ERG fusion gene transcripts. Cancer Res. 68, 8516–8524 (2008).

    Article  CAS  Google Scholar 

  69. Koh, C. M. et al. MYC and prostate cancer. Genes Cancer 1, 617–628 (2010).

    Article  CAS  Google Scholar 

  70. Washington, M. N. & Weigel, N. L. 1{alpha}, 25-Dihydroxyvitamin D3 inhibits growth of VCaP prostate cancer cells despite inducing the growth-promoting TMPRSS2:ERG gene fusion. Endocrinology 151, 1409–1417 (2010).

    Article  CAS  Google Scholar 

  71. Wolf, I. et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res. 66, 7818–7823 (2006).

    Article  CAS  Google Scholar 

  72. Myung, S. J. et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc. Natl Acad. Sci. USA 103, 12098–12102 (2006).

    Article  CAS  Google Scholar 

  73. Martin, S. K. & Kyprianou, N. Gene fusions find an ERG-way to tumor inflammation. Cancer Biol. Ther. 11, 418–420 (2011).

    Article  CAS  Google Scholar 

  74. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nat. Genet. 42, 668–675 (2010).

    Article  CAS  Google Scholar 

  75. Epstein, J. I. & Herawi, M. Prostate needle biopsies containing prostatic intraepithelial neoplasia or atypical foci suspicious for carcinoma: implications for patient care. J. Urol. 175, 820–834 (2006).

    Article  Google Scholar 

  76. Bismar, T. A. et al. PTEN genomic deletion is an early event associated with ERG gene rearrangements in prostate cancer. BJU Int. 107, 477–485 (2011).

    Article  Google Scholar 

  77. Yoshimoto, M. et al. Absence of TMPRSS2:ERG fusions and PTEN losses in prostate cancer is associated with a favorable outcome. Mod. Pathol. 21, 1451–1460 (2008).

    Article  CAS  Google Scholar 

  78. Reid, A. H. et al. Molecular characterisation of ERG, ETV1 and PTEN gene loci identifies patients at low and high risk of death from prostate cancer. Br. J. Cancer 102, 678–684 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors express their sincere thanks to Mr Stephen Doyle for assisting with the artwork. The views expressed in this manuscript are those of the authors and do not reflect the official policy of the Department of the Army, Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to researching data, discussion of content, and writing the manuscript. The Review was then edited by A. Dobi, D. G. McLeod and S. Srivastava before submission.

Corresponding author

Correspondence to Albert Dobi.

Ethics declarations

Competing interests

S. Srivastava and A. Dobi declare that they are patent holders/applicants with Biocare Medical. Other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, P., Sesterhenn, I., Brassell, S. et al. Clinical potential of the ERG oncoprotein in prostate cancer. Nat Rev Urol 9, 131–137 (2012). https://doi.org/10.1038/nrurol.2012.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2012.10

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer