Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting 5α-reductase for prostate cancer prevention and treatment

Abstract

Testosterone is the most abundant circulating androgen, and can be converted to dihydrotestosterone (DHT), a more potent androgen, by the 5α-reductase enzymes in target tissues. Current treatments for prostate cancer consist of reducing androgen levels by chemical or surgical castration or pure antiandrogen therapy that directly targets the androgen receptor (AR). Although these therapies reduce tumor burden and AR activity, the cancer inevitably recurs within 18–30 months. An approach targeting the androgen–AR axis at different levels could, therefore, improve the efficacy of prostate cancer therapy. Inhibition of 5α-reductase is one such approach; however, the two largest trials to investigate the use of the 5α-reductase inhibitors (5ARIs) finasteride and dutasteride in patients with prostate cancer have shown that, although the incidence of cancer was reduced by 5ARI treatment, those cancers that were detected were more aggressive than in patients treated with placebo. Thus, the best practice for using these drugs to prevent and treat prostate cancer remains unclear.

Key Points

  • Activation of the androgen receptor (AR) is crucial for tumor cell progression and survival of prostate cancer, and androgen deprivation therapy remains the main clinical approach in men with locally advanced tumors

  • Current therapies incompletely suppress the androgen–AR axis, but a multiple therapeutic approach, targeting androgens and their receptor, has potential to improve clinical outcomes

  • Treatment of prostate cancer cells with 5α-reductase inhibitors (5ARIs) inhibits cellular pathways regulating metabolism, cell growth and proliferation, triggering apoptosis and decreasing prostate size

  • Although 5ARI treatment reduces the risk of developing prostate cancer, patients treated with these drugs have tumors with higher Gleason scores than those who receive placebo

  • Use of 5ARIs to prevent and treat prostate cancer remains controversial, and further investigation is necessary to understand the presence of more-aggressive tumors in patients receiving these drugs

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The steroidogenesis pathway.
Figure 2: The role of DHT in different stages of prostate development and cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    Article  PubMed  Google Scholar 

  2. Lange, C. A., Gioeli, D., Hammes, S. R. & Marker, P. C. Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer. Annu. Rev. Physiol. 69, 171–199 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Nacusi, L. P. & Tindall, D. J. Androgen receptor abnormalities in castration-recurrent prostate cancer. Expert Rev. Endocrinol. Metab. 4, 417–422 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Russell, D. W. & Wilson, J. D. Steroid 5 alpha-reductase: two genes/two enzymes. Annu. Rev. Biochem. 63, 25–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Labrie, F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 22, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Andriole, G. et al. Dihydrotestosterone and the prostate: the scientific rationale for 5alpha-reductase inhibitors in the treatment of benign prostatic hyperplasia. J. Urol. 172, 1399–1403 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Imamoto, T. et al. The role of testosterone in the pathogenesis of prostate cancer. Int. J. Urol. 15, 472–480 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Chatterjee, B. The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Mol. Cell Biochem. 253, 89–101 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Tiwari, A., Krishna, N. S., Nanda, K. & Chugh, A. Benign prostatic hyperplasia: an insight into current investigational medical therapies. Expert Opin. Investig. Drugs 14, 1359–1372 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Dehm, S. M. & Tindall, D. J. Molecular regulation of androgen action in prostate cancer. J. Cell Biochem. 99, 333–344 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Penning, T. M. New frontiers in androgen biosynthesis and metabolism. Curr. Opin. Endocrinol. Diabetes Obes. 17, 233–239 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aggarwal, S., Thareja, S., Verma, A., Bhardwaj, T. R. & Kumar, M. An overview on 5 alpha-reductase inhibitors. Steroids 75, 109–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Imperato-McGinley, J., Sanchez, R. S., Spencer, J. R., Yee, B. & Vaughan, E. D. Comparison of the effects of the 5 alpha-reductase inhibitor finasteride and the antiandrogen flutamide on prostate and genital differentiation: dose-response studies. Endocrinology 131, 1149–1156 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Pelletier, G., Luu-The, V., Huang, X. F., Lapointe, H. & Labrie, F. Localization by in situ hybridization of steroid 5 alpha-reductase isozyme gene expression in the human prostate and preputial skin. J. Urol. 160, 577–582 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Rittmaster, R. S. 5 alpha-reductase inhibitors. J. Androl. 18, 582–587 (1997).

    CAS  PubMed  Google Scholar 

  16. Silver, R. I. & Russell, D. W. 5 alpha-reductase type 2 mutations are present in some boys with isolated hypospadias. J. Urol. 162, 1142–1145 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Walsh, P. C. et al. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N. Engl. J. Med. 291, 944–949 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Iehle, C. et al. Differences in steroid 5 alpha-reductase iso-enzymes expression between normal and pathological human prostate tissue. J. Steroid Biochem. Mol. Biol. 68, 189–195 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Wilson, J. D., Griffin, J. E. & Russell, D. W. Steroid 5 alpha-reductase 2 deficiency. Endocr. Rev. 14, 577–593 (1993).

    CAS  PubMed  Google Scholar 

  20. Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 67, 5117–5125 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Uemura, M. et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 99, 81–86 (2008).

    CAS  PubMed  Google Scholar 

  22. Cantagrel, V. et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142, 203–217 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, X., Chen, C., Singh, S. M., Labrie, F. & Labrie, F. The enzyme and inhibitors of 4-ene-3-oxosteroid 5 alpha-oxidoreductase. Steroids 60, 430–441 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Tindall, D. J. & Rittmaster, R. S. The rationale for inhibiting 5 alpha-reductase isoenzymes in the prevention and treatment of prostate cancer. J. Urol. 179, 1235–1242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhou, Z. X., Lane, M. V., Kemppainen, J. A., French, F. S. & Wilson, E. M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol. Endocrinol. 9, 208–218 (1995).

    CAS  PubMed  Google Scholar 

  26. Wright, A. S., Thomas, L. N., Douglas, R. C., Lazier, C. B. & Rittmaster, R. S. Relative potency of testosterone and dihydrotestosterone in preventing atrophy and apoptosis in the prostate of the castrated rat. J. Clin. Invest. 98, 2558–2563 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wright, A. S., Douglas, R. C., Thomas, L. N., Lazier, C. B. & Rittmaster, R. S. Androgen-induced regrowth in the castrated rat ventral prostate: role of 5 alpha-reductase. Endocrinology 140, 4509–4515 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Wilson, J. D. The role of 5alpha-reduction in steroid hormone physiology. Reprod. Fertil. Dev. 13, 673–678 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Pratt, W. B. & Toft, D. O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  PubMed  Google Scholar 

  30. Smith, D. F. & Toft, D. O. Minireview: the intersection of steroid receptors with molecular chaperones: observations and questions. Mol. Endocrinol. 22, 2229–2240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elbi, C. et al. Molecular chaperones function as steroid receptor nuclear mobility factors. Proc. Natl Acad. Sci. USA 101, 2876–2881 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Agoulnik, I. U. & Weigel, N. L. Co-activator selective regulation of androgen receptor activity. Steroids 74, 669–674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heemers, H. V. & Tindall, D. J. Androgen receptor (AR) coregulators: a diversity of functions converging on and regulating the AR transcriptional complex. Endocr. Rev. 28, 778–808 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Heemers, H. V. & Tindall, D. J. Unraveling the complexities of androgen receptor signaling in prostate cancer cells. Cancer Cell 15, 245–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huggins, C. & Hodges, C. V. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J. Urol. 168, 9–12 (2002).

    Article  PubMed  Google Scholar 

  36. Harris, W. P., Mostaghel, E. A., Nelson, P. S. & Montgomery, B. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crawford, E. D. et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N. Engl. J. Med. 321, 419–424 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Denis, L. European Organization for Research and Treatment of Cancer (EORTC) prostate cancer trials, 1976–1996. Urology 51, 50–57 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Eisenberger, M. A. et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N. Engl. J. Med. 339, 1036–1042 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Agoulnik, I. U. & Weigel, N. L. Androgen receptor action in hormone-dependent and recurrent prostate cancer. J. Cell Biochem. 99, 362–372 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Debes, J. D. & Tindall, D. J. Mechanisms of androgen-refractory prostate cancer. N. Engl. J. Med. 351, 1488–1490 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Dehm, S. M. & Tindall, D. J. Regulation of androgen receptor signaling in prostate cancer. Expert Rev. Anticancer Ther. 5, 63–74 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Taplin, M. E. Drug insight: role of the androgen receptor in the development and progression of prostate cancer. Nat. Clin. Pract. Oncol. 4, 236–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Pienta, K. J. & Bradley, D. Mechanisms underlying the development of androgen-independent prostate cancer. Clin. Cancer Res. 12, 1665–1671 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Oefelein, M. G. Time to normalization of serum testosterone after 3-month luteinizing hormone-releasing hormone agonist administered in the neoadjuvant setting: implications for dosing schedule and neoadjuvant study consideration. J. Urol. 160, 1685–1688 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belanger, B. et al. Comparison of residual C-19 steroids in plasma and prostatic tissue of human, rat and guinea pig after castration: unique importance of extratesticular androgens in men. J. Steroid Biochem. 32, 695–698 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Mizokami, A. et al. The adrenal androgen androstenediol is present in prostate cancer tissue after androgen deprivation therapy and activates mutated androgen receptor. Cancer Res. 64, 765–771 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Nishiyama, T., Hashimoto, Y. & Takahashi, K. The influence of androgen deprivation therapy on dihydrotestosterone levels in the prostatic tissue of patients with prostate cancer. Clin. Cancer Res. 10, 7121–7126 (2004).

    Article  CAS  PubMed  Google Scholar 

  50. Yoon, F. H. et al. Testosterone recovery after prolonged androgen suppression in patients with prostate cancer. J. Urol. 180, 1438–1444 (2008).

    Article  PubMed  Google Scholar 

  51. Mitamura, K. et al. Identification of dehydroepiandrosterone metabolites formed from human prostate homogenate using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. J. Chromatogr. A. 961, 97–105 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Nakamura, Y. et al. In situ androgen producing enzymes in human prostate cancer. Endocr. Relat. Cancer 12, 101–107 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Pelletier, G. Expression of steroidogenic enzymes and sex-steroid receptors in human prostate. Best Pract. Res. Clin. Endocrinol. Metab. 22, 223–228 (2008).

    Article  CAS  Google Scholar 

  54. Locke, J. A. et al. A novel communication role for CYP17A1 in the progression of castration-resistant prostate cancer. Prostate 69, 928–937 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Small, E. J. et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J. Clin. Oncol. 22, 1025–1033 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kruit, W. H., Stoter, G. & Klijn, J. G. Effect of combination therapy with aminoglutethimide and hydrocortisone on prostate-specific antigen response in metastatic prostate cancer refractory to standard endocrine therapy. Anticancer Drugs 15, 843–847 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. Novel steroidal inhibitors of human cytochrome P45017 alpha (17 alpha-hydroxylase-C17, 20-lyase): potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Rowlands, M. G. et al. Esters of 3-pyridylacetic acid that combine potent inhibition of 17 alpha-hydroxylase/C17, 20-lyase (cytochrome P45017 alpha) with resistance to esterase hydrolysis. J. Med. Chem. 38, 4191–4197 (1995).

    Article  CAS  PubMed  Google Scholar 

  61. Reid, A. H., Attard, G., Barrie, E. & de Bono, J. S. CYP17 inhibition as a hormonal strategy for prostate cancer. Nat. Clin. Pract. Urol. 5, 610–620 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Yap, T. A., Carden, C. P., Attard, G. & de Bono, J. S. Targeting CYP17: established and novel approaches in prostate cancer. Curr. Opin. Pharmacol. 8, 449–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Attard, G. et al. Selective inhibition of CYP17 with abiraterone acetate is highly active in the treatment of castration-resistant prostate cancer. J. Clin. Oncol. 27, 3742–3748 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Smith, C. M., Ballard, S. A., Worman, N., Buettner, R. & Masters, J. R. 5 alpha-reductase expression by prostate cancer cell lines and benign prostatic hyperplasia in vitro. J. Clin. Endocrinol. Metab. 81, 1361–1366 (1996).

    CAS  PubMed  Google Scholar 

  66. Negri-Cesi, P. et al. Presence of 5 alpha-reductase isozymes and aromatase in human prostate cancer cells and in benign prostate hyperplastic tissue. Prostate 34, 283–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Vaughan, D. et al. Long-term (7 to 8-year) experience with finasteride in men with benign prostatic hyperplasia. Urology 60, 1040–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Evans, H. C. & Goa, K. L. Dutasteride. Drugs Aging 20, 905–918 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Clark, R. V. et al. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5 alpha-reductase inhibitor. J. Clin. Endocrinol. Metab. 89, 2179–2184 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Gilling, P. J. G. et al. Efficacy of dutasteride and finasteride for the treatment of benign prostate hyperplasia:results of the 1-year Enlarged Prostate International Comparator Study (EPICS). BJU Int. 95 (Suppl. 1), 1–38 (2005).

    Google Scholar 

  71. Kirby, R. S. et al. Efficacy and tolerability of doxazosin and finasteride, alone or in combination, in treatment of symptomatic benign prostatic hyperplasia: the Prospective European Doxazosin and Combination Therapy (PREDICT) trial. Urology 61, 119–126 (2003).

    Article  PubMed  Google Scholar 

  72. Nickel, J. C. Comparison of clinical trials with finasteride and dutasteride. Rev. Urol. 6 (Suppl. 9), S31–S39 (2004).

    PubMed  PubMed Central  Google Scholar 

  73. Faller, B., Farley, D. & Nick, H. Finasteride: a slow-binding 5 alpha-reductase inhibitor. Biochemistry 32, 705–710 (1993).

    Google Scholar 

  74. Bull, H. G. et al. Mechanism-based inhibition of human steroid 5α-reductase by finasteride: enzyme-catalyzed formation of NADP−dihydrofinasteride, a potent bisubstrate analog inhibitor. J. Am. Chem. Soc. 118, 2359–2365 (1996).

    Article  CAS  Google Scholar 

  75. Bakshi, R. K. et al. 4-Aza-3-oxo-5 alpha-androst-1-ene-17 beta-N-aryl-carboxamides as dual inhibitors of human type 1 and type 2 steroid 5 alpha-reductases. Dramatic effect of N.-aryl substituents on type 1 and type 2 5 alpha-reductase inhibitory potency. J. Med. Chem. 38, 3189–3192 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Roehrborn, C. G., Boyle, P., Nickel, J. C., Hoefner, K. & Andriole, G. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology 60, 434–441 (2002).

    Article  PubMed  Google Scholar 

  77. Stuart, J. D. et al. Pharmacokinetic parameters and mechanisms of inhibition of rat type 1 and 2 steroid 5 alpha-reductases: determinants for different in vivo activities of GI198745 and finasteride in the rat. Biochem. Pharmacol. 62, 933–942 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Harris, G. S. & Kozarich, J. W. Steroid 5 alpha-reductase inhibitors in androgen-dependent disorders. Curr. Opin. Chem. Biol. 1, 254–259 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt, L. J., Murillo, H. & Tindall, D. J. Gene expression in prostate cancer cells treated with the dual 5 alpha-reductase inhibitor dutasteride. J. Androl. 25, 944–953 (2004).

    Article  CAS  PubMed  Google Scholar 

  80. Andriole, G. L. et al. Effect of the dual 5 alpha-reductase inhibitor dutasteride on markers of tumor regression in prostate cancer. J. Urol. 172, 915–919 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Schmidt, L. J. et al. Effects of the 5 alpha-reductase inhibitor dutasteride on gene expression in prostate cancer xenografts. Prostate 69, 1730–1743 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mendelsohn, L. G. Prostate cancer and the androgen receptor: strategies for the development of novel therapeutics. Prog. Drug Res. 55, 213–233 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Bonaccorsi, L. et al. Prostate cancer: a model of integration of genomic and non-genomic effects of the androgen receptor in cell lines model. Steroids 73, 1030–1037 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Thomas, L. N. et al. 5 alpha-reductase type 1 immunostaining is enhanced in some prostate cancers compared with benign prostatic hyperplasia epithelium. J. Urol. 170, 2019–2025 (2003).

    Article  CAS  PubMed  Google Scholar 

  85. Lepor, H. et al. The efficacy of terazosin, finasteride, or both in benign prostatic hyperplasia. Veterans Affairs Cooperative Studies Benign Prostatic Hyperplasia Study Group. N. Engl. J. Med. 335, 533–539 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Thompson, I. M. et al. The influence of finasteride on the development of prostate cancer. N. Engl. J. Med. 349, 215–224 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Serfling, R. et al. Quantifying the impact of prostate volumes, number of biopsy cores and 5 alpha-reductase inhibitor therapy on the probability of prostate cancer detection using mathematical modeling. J. Urol. 177, 2352–2356 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Andriole, G. L. et al. Effect of dutasteride on the risk of prostate cancer. N. Engl. J. Med. 362, 1192–1202 (2010).

    Article  CAS  PubMed  Google Scholar 

  89. Ishikawa, S., Soloway, M. S., Van der Zwaag, R. & Todd, B. Prognostic factors in survival free of progression after androgen deprivation therapy for treatment of prostate cancer. J. Urol. 141, 1139–1142 (1989).

    Article  CAS  PubMed  Google Scholar 

  90. Andriole, G. et al. Chemoprevention of prostate cancer in men at high risk: rationale and design of the reduction by dutasteride of prostate cancer events (REDUCE) trial. J. Urol. 172, 1314–1317 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Schroder, F. H. et al. Can. dutasteride delay or prevent the progression of prostate cancer in patients with biochemical failure after radical therapy? Rationale and design of the Avodart after Radical Therapy for Prostate Cancer Study. BJU Int. 103, 590–596 (2009).

    Article  PubMed  Google Scholar 

  92. Fleshner, N. et al. Delay in the progression of low-risk prostate cancer: rationale and design of the Reduction by Dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial. Contemp. Clin. Trials 28, 763–769 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Sartor, O., Gomella, L. G., Gagnier, P., Melich, K. & Dann, R. Dutasteride and bicalutamide in patients with hormone-refractory prostate cancer: the Therapy Assessed by Rising PSA (TARP) study rationale and design. Can. J. Urol. 16, 4806–4812 (2009).

    PubMed  Google Scholar 

  94. Taplin, M. E. et al. Phase II study of androgen synthesis inhibition with ketoconazole, hydrocortisone, and dutasteride in asymptomatic castration-resistant prostate cancer. Clin. Cancer Res. 15, 7099–7105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sartor, O. et al. Activity of dutasteride plus ketoconazole in castration-refractory prostate cancer after progression on ketoconazole alone. Clin. Genitourin. Cancer 7, E90–E92 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive support from NIH grants CA121277, CA91956, and CA125747. D. J. Tindall receives support from the T. J. Martell Foundation, grant DK65236 and L. P. Nacusi is the recipient of the Mayo Clinic Endocrinology, Diabetes, and Metabolism training grant.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to discussions of content, writing and editing of this article.

Corresponding author

Correspondence to Donald J. Tindall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nacusi, L., Tindall, D. Targeting 5α-reductase for prostate cancer prevention and treatment. Nat Rev Urol 8, 378–384 (2011). https://doi.org/10.1038/nrurol.2011.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrurol.2011.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing